金属表面のXAFS測定

木村正雄 新日本製鉄(株)先端技術研究所

kimura.masao@nsc.co.jp

謝辞

放射光利用に関して ・高エネルギー加速器研究機構 BL-9A,9C,11B,12C 北島義典、丹羽尉博、稲田康宏、野村昌治

実験に関して(新日鉄)

- ・低合金鋼の大気腐食:紀平寛
- ・放射光実験:太田典明
- ・低合金鋼の大気腐食:紀平寛
- ・ステンレス孔食:金子道郎

観察したい現象 × ^{放身}

放射光を活用した in situ 技術の開発

Development of advanceweathering steelH. Kihira et al., (1999,2000)

Maintenance costEnvironment issue

Needs for atmospheric corrosion resistance w/o coating and/or painting

In situ XAFS observation during wet-dry cycles

PF, BL-9A

PF, BL-9C, 11B, 12C

XAFS spectra of rust and references (Cl K-edge) (9 y's at a coastal area)

→ slight but significant difference

Ni-state in the rust by XAFS (X-ray Absorption Fine Structure)

Ni substitute Fe^{2+} in Fe_3O_4 : formation of $Fe_2Ni O_4$

Reactions during wet-dry cycles by XAFS, Evolution of "Fe(O,OH)6 nano-network" 斜入射X線回折,.

Reaction at Liq./Rust interface

Fe₂NiO₄ NiA-WS

(protective rust)

α -FeOOH

Conventional WS (no protective rust)

How can we observe the interface?

Idea for the system

d(z) range \approx mm

 O_2

 O_2

Cl

d(z) range $\approx \mu m$

Masao Kimura, 2008 NIPPON STEEL

Change of Structure Near Interface Fe-18Cr-12Ni-2Mo, 1M LiBr, E=0.8V(Ag/AgCl)

界面反応のその場観察 ← 蛍光-XAFS (耐候性鋼の大気腐食)

←透過-XAFS, 斜入射X線回折,..

Electro-chemical reactions (corrosion, batteries,..) Metal-solution reactions Catalysis

Understanding of Mechanism & Control of the reactions