

- 1. 生体濃縮現象
- 2. 蛍光XAFS法の特徴
- 3. 研究事例

エラコに濃集されたバナジウムに対する蛍光XAFS Feを高濃度に濃集したヒザラガイの歯に対する蛍光XAFS

4. まとめ

特定元素の高濃度蓄積生物

*K. Okoshi and T. Ishii, Mar. Biotech. 3, 252 (1996).

生物種	主要沈着組織	局在場所	濃縮元素	濃度(ppm)	濃縮係数**
ワスレガイ	腎臓	細胞外顆粒	<u>Mn</u> , Zn, Ca, P	44200	2 × 10 ⁷
シャコガイ	腎臓	細胞内顆粒	<u>Mn.</u> Zn, Ca, P	3270	3×10 ⁵
マダコ	エラ心臓	細胞内顆粒	<u>Co,</u> Ni, U	120	4×10 ⁵
ヒザラガイ	歯舌	歯冠	<u>Fe.</u> Ca, P	101000	4×10 ⁸
カサガイ	歯舌	歯冠	<u>Fe,</u> Si	41200	1 × 10 ⁸
エラコ	エラ	表皮細胞	V	5100	2×10 ⁶

•海水中での元素濃度はTrekianの値を使用。 Mn: 0.4ppb, Co: 0.03ppb, Fe:3ppb, V:1.9ppb

ヒザラガイ

歯舌

生物に対する非破壊状態分析

蛍光X線分析とXAFS法は、 生物や地球科学試料にとって 理想的な分析法の一つである。

- ・どこにあるのか
- ・他の元素や組織とどのように関連しているのか
- ・どのような機能を持っているのか
- ・試料が稀少
- → 同じ試料で複数の分析を行う必要

蛍光XAFS法の 特徴

蛍光法の長所・短所

透過法測定で最も重要: 試料が均一で、適切な厚さを持つこと

- 粉末を塗布したテープを数枚重ねる
- ペレットを作る(BN、PE、セルロース等で希釈)
- ・ セルやポリエチレン袋に充填(厚さ可変セル)

透過法を適用できない試料

1. 測定元素の濃度が低い

- 2. 試料が不均一 例) 凸凹がある ピンホールがありダイレクトビームがIの 検出器に入ってしまう 等
- 3. 試料が微小・微量 例)入射X線のビームサイズより試料が小さい
- 4. マトリクスのX線吸収が大きい 例) HgSに固溶しているZn

生物に対する応用を考えた場合の蛍光XAFS

〇長所

・検出器の選択により、主成分から微量成分まで 様々な濃度の元素をターゲットにできる

(Lytle, SSD, SDD)

・試料は非破壊で測定可能 (生きたままでも)

・微量・微小な試料でも測定可能

●短所

- ・入射X線の強度が大きいことが前提:放射光が
- ・スペクトルが歪み易いXAFSの原理と異なるため、 解析には注意が必要
- ・ノイズが大きく、XAFS振動の抽出が難しい
- ・共存元素の蛍光X線による影響
- ・入射X線によるダメージ

研究事例 1 エラコに濃集されたバナジウムに対する蛍光XAFS

和名	バナジウムボヤ	ナツメボヤ	スジキレボヤ	マボヤ
学名	Ascidia gemmata	A. ahodori	A. sydneiensis samea	Halocynthia roretzi
被囊	—	2.4	0.06	0.01
筋膜	—	11.2	0.7	0.001
鰓	_	12.9	1.4	0.004
血球	347.2	59.9	12.8	0.007
血漿	_	1.0	0.05	0.001

<u>バナジウムホヤの外観</u>

海水中のバナジウム濃度: 35nmol/dm³ ホヤ血球のバナジウムの濃縮係数: 30万~1000万

冠鰓の凍結切片のSEM像*

冠鰓の凍結切片に対する Vの2次元元素マッピング*

生物種	主要沈着組織	局在場所	濃縮元素	濃度(ppm)	濃縮係数**
エラコ	エラ	表皮細胞	V	5100	2 × 10 ⁶

エラコの外観

参考文献

1. Michibata H, Iwata Y, Hirata J (1991) Isolation of highly acidic and vanadiumcontaining blood cells from among several types of blood cell from Ascidiidae species by density gradient centrifugation. J Exp Zool 257: 306-313 2. Michibata H, Terada T, Anada N, Yamakawa K, Numakunai T (1986) Biol. Bull. 171, 672-681.

エラコに濃集されたVの蛍光XAFS測定

Normalized absorption coefficient

エラコ中のVのXAFS解析

Vに関するk²·χ(k)曲線

Fig. エラコとV(acac)₃の V周りの同型分布曲線

エラコに含まれるVの局所構造パラメータ

	n	r/Å	σ/Å
エラコ	6.0*	2.00(1)	0.158(1)

研究事例 2

Feを高濃度に濃集したヒザラガイの歯に対する蛍光XAFS

Elemental composition of the teeth of chiton

Elemental analyses of teeth of chiton Measured by ICP-AS

Fe	101000 (mg/m,dry)
Ca	30700
P	21400
Mg	4490
Zn	3130
Sr	570
Na	500
Κ	201
Al	54.0
Mn	53.0
Cu	51.0
Ν	20.0
Cd	18.0
Cr	11.0
Co	7.1
Ni	6.1
Ba	3.4

Two-dimensional elemental mapping by EPMA

Variation of mineral components in the maturation process of the teeth of chiton

Specimen:40 radular teeth of chiton Instruments: X-ray diffractometer, Rigaku Rint 2000, Cu Ka, 40kV, 30mA, from 6 to 95deg, using nonreflecting quartz holder

- 1. 生体濃縮現象や生体鉱物化現象の研究には、非破壊状態分析が 重要である。
- 2. 蛍光XAFS法は、生きたままの生物試料や微小で不均質な試料に 対しても応用が可能である。
- 3. 生物・地球科学、環境科学の研究分野で、ますます蛍光XAFSの利用が期待される。

生物試料を扱う上での問題点

○ 通常、生物学的実験では個体差の問題を低減するために、多くの個体に対する
データを統計的に処理する。 →放射光実験では、これが難しい

○ 生物学・医学の専門知識をもったXAFSユーザーの開拓が望まれる。