PF研究会「蛍光XAFS研究の現状と進展」, 2009年3月11日

ピクセルアレイ検出器(PAD)でみる新しい 蛍光XASの世界 Unconventional Fluorescence XAS Applications using Ge PAD

Fluorescence-XAS probing a dilute system

Local structure and spin states in MbOH

FeN6 (Oh)

ヘム面中心は6配位、 5thはポケットのHs、 6thが活性中心 Spin-dependent XANES

Photo-induced spin transition in FePc

スピンクロスオーバー錯体(FePc)の光励起スピン転移

Laser illumination changes Fe spin state from S=0 to S=2

Oyanagi et al., J. of Luminescence 119, 361 (2006).

Fe K-XANES of FePc and MbOH FePcとMbOHのXASスペクトルの類似性

1mMの世界

1mgの世界

XASを蛍光法で測定する理由

A 希薄な系(バルクで元素濃度が低い)
生体物質(1mMの世界)、溶液化学、触媒など
B 薄膜、表面吸着種(面密度が低い)
なぜ蛍光法を用いるのか? 感度が高いから!

一般の系ではどうか

透過法をうのが常識 ほんとうのところはどうか? 蛍光の吸収補正と統計誤差(フォトン計測効率) C 微粒子、吸収が充分大きい系 (1mgの世界)

蛍光計測効率が上がれば非常識が常識になるのか?

蛍光検出による粉末結晶の精密X線分光 XAS Studies of Powder Crystals using Fluorescence X-ray Detection

XAS (EXAFS, XANES)の精密化を可能にしたピクセルとは?

信号変調分は1%オーダーであり、統計誤差は0.1%、フォトン統計は100万カウントが要求される

EXAFSの実験方法について

原理は簡単だが現実には難しい!

実験の幾何学配置

セグメント検出器の初期(Nalアレイ)

ー般的なフォトマル+研磨Nal , Cramer, Powers,... 1980代

浜松ホトニクスのガンマ カメラ角形フォトマル+壁 開Nal, 1984

Nal Scintillation Counter Array $\Delta E = 0$ 9 (upgraded to 15) Plastic Scintillation Counter Array (6)

+ 単素子Ge SSD

18% of 4π ΔΕ=41%Ε

ピクセルとは? What is pixel?

Pixel = picture + cell ピクセルとは画素の単位をいう造語 あなたの携帯カメラは何ピクセル?

セグメント検出器開発の歴史

13-elemnt Ge SSD (Canberra) 1987

Cramer

7-elemnt Si(Li) SSD (EG&G) 1990

Oyanagi et al., RSI 66, 5477 (1995)

19-elemnt Ge SSD (EG&G) 1994 Oyanagi et al., NIM A 403, 58 (1998)

30-elemnt Ge SSD (EG&G) 1995 Hasnain

100 Ge PAD (EURISYS) 2000 Oyanagi et al., NIM A 513, 340 (2003) 開発に7年を要す

検出素子の間隔はほぼゼロ 高密度化、信頼性、高性能化 を実現

Segmented detectoris highly国際競争は熾烈いわばエッフェル塔からcompetitive!世界最高ビルへのジャンプ

世界最高層ビルの高 さは1.6 km(計画中) 20-30素子はエッ_{PHOTONICS} RESEARCH INSTITUTE, AIST フェル塔程度

ピクセルアレイ検出器の進化

1st Generation

5 mm x 5 mm 100 pixels

215 <u>eV@5.9</u> keV

No. 1 Spring-8 (Oyanagi)

No. 2 Photon Factory (Oyanagi)

2nd Generation

5 mm x 5 mm 36 pixels

165 <u>eV@5.9</u> keV

No. 3 Australian Beamline at PF (Foran et al.)

Melbourne, Stanford, NSLS... 続々と稼働予定

PAD Electronics

2000

8ch/CAMAC module CAMAC BUS Linux Fedora 7.0 2007

4ch/PCI DSP module PCI BUS + Server Windows PC

100ch/2CAMAC crates

EASY SETUP LOW COST COMPACTNESS

50ch/unit multi-channel DSP

iew

stalled at PF

operation id N₂ per month ~ 24000 litters

Bulk single crystals

LSCO on a standard type Low-impurity type 強力な冷凍機で温度精度を改良

Oyanagi et al., J. Synchrotron Radiation, 13, 314 (2006). Oyanagi et al., Phys. Rev. B75, 024511 (2007)

X線分光でみるFeAs超伝導体の局所格子 Local Structure of FeAs Superconductors Probed by XAS

E-P相互作用が小く、しかしUも小さな系での格子効果とは?

LaAsFeO(F) system 新型超伝導体の発見(2008)

Tc=29.1 K、ポテンシャルは50 K クラス

超伝導機構はBCS、スピンゆらぎ?

DFTの結果はフォノンではなさそう?

Boeri et al., PRL 101, 026403 (2008)

ネマテイック相的磁性ゆらぎ?

Fang et al., PRB 77, 224509 (2008)

Uは大きくない(強相関でもない)!

Malaeb et al., JPSJ 77, 093714 (2008)

マルチギャップBCS? Hiraishi et al., JPSJ 78, 023710 (2009)

未知の部分がまだまだ多い 粉末結晶で精密測定がしたい

LaFAsO(F)の相図

低温で正方晶から斜方晶へ相転移 AFM秩序で安定化 Y. Kamihara and H. Hosono

実験に使われたLaFeAsO(F)試料 電気抵抗の温度変化

LaFeAsO(F)のEXAFSとそのフーリエ変換

As K-EFe K-edge

EXAFS oscillations taken at RT and 20 K

As K-EXAFS からAs原子からみた局所構造 As-Fe距離、相対変位(MSRD)が得られる

Fe K-EXAFSからFe原子からみた局所構造 Fe-As, Fe-Fe距離、相対変位(MSRD)が得られる

1mgの世界 精度の高いXASスペクトル

Fourier transform (FT) magnitude functions, experimental data (black square) vs simulated results based on multiple path (red).

黒は実験値、赤は計算値を示す(計算には全ての 散乱経路が取り込まれた)青はFe-Asの寄与(Fe-Feが近くに存在)

Zhang et al., Phys. Rev. B 78, 214513 (2008)

Fe-As distance and MSRD for the Fe-Fe Fe-As結合とFe-Fe相関の温度変化

キャリアドーピングによりFe-A 距離とFe-Fe相関の相対変位(MSRD)は減少

SDWの消失に対応してFe-Fe MSRDにみられる磁性転移の不安定性が消失 Fe副格子は静的(結晶構造)に変化

Fe-As MSRD as a function of temperature Fe-As結合の相対変位(MSRD)の温度変化

キャリアドープで相対変位の減少、Fe-As共有結合が強まる(pd混成の増大)

SDWが消失してFe-As MSRDの不安定性もなくなる あらたにFe-As MSRD にT*~ 70K以下で格子異常が発生

LaFeAsOのまとめ

 ◆ キャリアによりFe-As, Fe-Fe, 距離およびMSRDが減少 Fドーピング*によりFe-As共有結合(pd混成)性が増大* ◆ アンドープではFe-Fe, Fe-As MSRDIこSDW転移の複雑な変化
 ◆ FドーピングによりFe-As, Fe-Fe MSRDIこSDW起因の構造が消失 キャリア(電子)ドープ*はSDW転移を抑制する* ◆ ドーピングにより低温にFe-As格子異常(MSRDの増大)が出現
 ◆ 銅酸化物(LSCO)と似ている格子の挙動

銅酸化物と共通の格子効果(電子格子相互作用)を示唆

Zhang et al., Phys. Rev. B 78, 214513 (2008)

今度は蛍光法を単結晶へ応用

銅酸化物超伝導体LSCOの局所格子 Local Structure of LaSrCuO Probed by XAS

キャリアドープにより誘起される低温の格子異常とは?

Cu-O EXAFS and FT in LSCO (Planar vs. apical) LSCOのab面とc軸方向の偏光EXAFSとFT

LSCOにおける格子異常研究の初期

Cu-O結合の分裂の発見Bond splitting (stripe)LTT変形とストライプ(モデル依存性、Tc近傍の挙動は不明)

Bianconi A, Saini N L, Lanzara A, Missori M, Rossetti T, Oyanagi H, Yamaguchi H, Oka K, and Ito T 1996 *Phys. Rev. Lett.* **76** 3412

 Lattice anomalies
 モデルに依存しない解釈

 格子変形が擬ギャップ、キャリアドープと関連

Saini N L, Lanzara A, Oyanagi H, Yamaguchi H, Oka K, Ito T, and Bianconi A *Phys. Rev.* B **55** 1997 12759 *For Bi 2212 see Phys. Rev.* B **54** 1996 12018

Mustre de Leon J, Acosta-Alejandro M, Conradson S D, and Bishop A R J. of Synchrotron Radiation 12 2005 193 Cu-O結合の分裂をRDFで確認 酸素原子変位によるダブルウエルのトンネル

<u>SC coherence</u> PAD検出器による精密化、格子コヒレンスと超伝導の対応を 制御されたTcで実証

Oyanagi H, Tsukada A, Naito M, and Saini N L 2007 Phys. Rev. B 75, 024511 (2007)

超伝導と格子異常の関係は銅酸化物の特徴である (格子効果が微視的機構に組み込まれている)

LSCOにおける格子異常研究の精密化 PADの利用により高精度EXAFSデータが可能に

LSCOの格子効果の精密解析結果

LSCOの酸素位置ゆらぎの温度変化の決定版

頂点酸素のふるまい

超伝導と格子異常の直接対応 超伝導なら格子異常がみえる (逆は真にあらず) 頂点酸素の効果は無視できる (完全な面内の変形のみ)

Cu-O結合の分裂 "BOND SPLITTING"

結合分裂の証拠

*Beatの観測(70 K付近)
モデルに依存しない結果
を長さの異なる結合距離の存在
*分布の広がりではない
*ふたつの安定な局所構造の存在

頂点酸素の相関があるモデルは除く

注目する面内酸素変形モデル

 Q_2

BREEZING

Miyaki et al. J. Phys. Soc. Jpn 77 (2008) 034702

Kochelaev et al., PRL 79 (1997) 4274 Bussmann-holder et al. Euro Phys. J. B44 (2005) 487

CuO_6 の格子異常のまとめ

◆キャリアにより生じる低温で酸素原子の変位

* 長い結合と短い結合の出現

◆ 超伝導発現と強い相関(逆は真にあらず)

◆頂点酸素は正常なフォノンのふるまい

☆ 面内酸素原子の変位が本質的

◆ポーラロン形成の証拠(格子の役割確立)

Zhang et al., Phys. Rev. B 79, 064521 (2009)

H. Oyanagi and C. J. Zhang Photonics Research Institute, AIST, Tsukuba, Japan

Structure and function Group at AIST

Oyanagi Zhang Sun

A. Tsukada, M. Naito K. Oka, T. Ito, C.H. Lee, H. Ihara H. Eisaki

Acknowledgement

Koizumi Bussmann-Holder

N. Saini, A. Bianconi H. Kamimura K. Ymaji

C. Fonneb, D. Gutknechtb, P. Dresslerb, R. Henckb, M.-O. Lampert

References

講演でとりあげた研究内容

PADおよび計測法の開発

Nuclear Instr. & Methods A 513, 340 (2003) J. of Synchrotron Radiation 13, 314 (2006)

<u>FeAs系の格子効果</u>

Phys. Rev. B 78, 214513 (2008) (Virtual Journal of Superconductivity, January 1 issue, 2009, AIP)

<u>LSCO系の格子効果</u>

Phys. Rev. B 75, 024511 (2007) Phys. Rev. B 79, 064521 (2009)

<u>LSCO系のMn置換</u>

Phys. Rev. B 75, 174504 (2007) Physica C 468, 898 (2008)

Ge PADは世界標準となる、PFの2号機は健在、活用すべし