# 蛍光分光XAFS法による地球化学試料中の 微量元素の高感度状態分析

#### 広島大学 大学院理学研究科 地球惑星システム学専攻

高橋 嘉夫

#### 謝辞

# SPring-8/JASRI 宇留賀朋哉、谷田肇、寺田靖子

# 広大院理・地惑 山本祐平、光延聖





#### 地球化学の面白さ





環境中での物質の相互作用には、 ブラックボックスな部分が多い。

でも、この中には、色々な現象が 沢山つまっている。

## なぜ化学状態を知る必要があるのか? (価数編)

#### 大気の進化とFeの酸化還元状態





#### 25億年前の Hamersley(豪州)の 縞状鉄鉱床



#### 全球凍結(Snow ball earth)時 の縞状鉄鉱床



## 元素の結合状態

## 対象元素が、どんな元素と結合しているか?



## そのスズは、有害なスズなのか? 有機態 or 無機態?

Takahashi et al., Anal. Chem. (2004)

#### 地球化学の面白さ: atomicなスケールからマクロを見る



# 岩石・土壌中の微量元素のXAFS分析

#### 何が検出限界を決めるのか?

絶対濃度でなく妨害元素の有無が検出限界決定 <u>\* S/B比 (Signal vs. Background)</u>

Si Mn Si Fe AI Fe Mn Si Si Si Fe Ca Mg Mn Fe Si Fe Ca

## 蛍光分光法の適用

#### ■ 多素子SSDが適用できない系

- → 測定目的元素の蛍光以外のX線が支配的な試料
  - (混在元素からの蛍光X線、散乱X線が支配的な希薄・薄膜試料)
- → SSDの計数限界のため、バックグラウンドX線で飽和



- ■対象: 鉄隕石中のOsのXAFS
  - 試料: 鉄隕石 Negrillos
  - 組成: Fe: 90.3 wt.% Ni: 4.74 wt.% Os:66 ppm
- SSDによるエネルギースペクトル → S/B比~1:10<sup>4</sup>
  - → Osの蛍光の検出困難

# **蛍光分光XAFS法**



## 実験の様子 (BL37XU@SPring-8)

## Bragg型蛍光分光器 の配置









入射ビーム: 0.2 mm x 0.2 mm



#### Bragg型蛍光分光器 (宇留賀さん自作)

1次元平面ベント型

結晶表面: Si(100)、回折面: Si(400) 平均曲率半径: 200 mm、厚み 0.2 mm

入射光と反射光が結晶の同じ側

集光はしないが、擬似集光点がある 擬似集光点に4象限スリットを設置 → バックグラウンドの低減

エネルギー分解能(計算値):30 eV



#### Laue型蛍光分光器 (Bent Crystal Laue Analyzer: BCLA)

結晶表面: Si(111)、回折面: Si(-111) 平均曲率半径: 130 mm、厚み 0.2 mm 受光面積が広い → 回折効率が高

い

低エネルギー領域で結晶による吸 収大

(Eu vs Mnの系では測定できず)

ソーラースリット(Mo)でBG除去



#### 蛍光分光後のエネルギースペクトル

#### ■ Os Laの蛍光分光



積分強度を1に規格化 試料:鉄隕石 Negrillos 組成: Fe: 90.3 wt.% Ni: 4.74 wt.% Os: 66 ppm(目的元素) ■ SSD併用の必要性 蛍光分光器からの"こぼれ"が大 きい

→ S/B比向上のため、SSD必要

分光後の蛍光強度:10<sup>4</sup> cps (SSDが飽和しない低強度)

→ 蛍光収量を高めることが重要

ラウエタイプは、受光面が広いと 有効(= 多素子SSDが有効)

# 鉄隕石(Negrillos)中のOs

#### ■単素子SSDによる計測



#### Os L<sub>3</sub>-edge XANES (Negrillos)

Base lineを1に規格化

S/B比: 蛍光分光法により、向上:

 $0.0086 \rightarrow 0.55$  (Bragg ) 0.35 (Laue)

S/N比: BraggとLaue型は同程度: 蛍光分光法により、4.5倍向上

Takahashi et al., Anal. Chim. Acta (2006)

#### ■19素子SSDの併用



- ▲μt=1に規格化したXANES
  Laue型+19素子SSD:
  → 受光面積が広く有効
- ·鉄隕石中: Osはmetallicな状態

S/B比はBragg型が良いが、 S/N比はLaue型+多素子SSDが良い。

# 研究例1

# 花崗岩中のウランの価数分析

## ウランの環境挙動

#### <u>ウランの環境挙動</u>

- ・放射性廃棄物の地層処分の安全性評価 (Brookins, 1984)
- ・劣化ウラン弾の健康被害 (Bleise et al., 2003)

天然環境中のウランの挙動を明らかにすることは重要

## ウランの環境挙動

### <u>ウランの環境挙動</u>

- ・放射性廃棄物の地層処分の安全性評価 (Brookins, 1984)
- ・劣化ウラン弾の健康被害 (Bleise et al., 2003)

天然環境中のウランの挙動を明らかにすることは重要

ウランの挙動は<mark>酸化還元状態</mark>に強く支配されている

大

- ・U(VI): 溶けやすい

ウランの酸化状態を知ることはウランの挙動を予測する上で重要

低ウラン濃度の天然試料についてXAFSの研究例はほとんどない

(100 mg/kg以下)

## これまでの研究 ・実験室内での合成試料 ・ウラン鉱床、高濃度汚染地域試料 (U濃度:数百 mg/kg以上)

<u>地殻中の典型的なウラン濃度</u>

0.3-11.7 mg/kg (UNSCEAR, 1993)

<u>天然試料中の低濃度ウラン(<100 ppm)の</u> <u>高感度XANES測定を行う</u>

## XRFスペクトル

#### <u>Br334(花崗岩): U = 22.1 mg/kg, Rb = 153 mg/kg</u>



## XANESスペクトル

# 分光結晶使用によるスペクトルの変化

・ノイズの低減より、スペクトルのクオリティは 格段に向上

#### 酸化状態の決定

- ・U(IV)とU(VI)でエネルギーが3.75-4.2 eV変化
- ・吸収端位置で酸化状態が決定可能 (Bertsch et al., 1994)



## XANESスペクトル

# 分光結晶使用によるスペクトルの変化

・ノイズの低減より、スペクトルのクオリティは 格段に向上

#### 酸化状態の決定

・U(IV)とU(VI)でエネルギーが3.75-4.2 eV変化 吸収端位置で酸化状態が決定可能 (Bertsch et al., 1994)

#### <u>ウランの酸化状態</u> ·全ての試料でU(VI)が支配的



#### XANESスペクトルのシミュレーション

<u>酸化状態決定の精度</u>

 XANESスペクトルのクオリティが酸化
 数の推定に与える影響を評価

•LorentzianとArctangent関数で XANESスペクトルをFit

Lorentzian関数のエネルギー位置の
 誤差が吸収端の誤差と等しいと仮定



| 誤差評価                               |                | with BCLA        |            |
|------------------------------------|----------------|------------------|------------|
| <u>■U(IV)→U(VI)</u> へのエネル          |                | peak energy (eV) | error (eV) |
| ギーシフトが約4 eVである<br>から、0.4 eVの誤差は10% | Br331          | 17162.8          | 0.14       |
|                                    | Br332          | 17163.7          | 0.53       |
| に相当する                              | Br333          | 17163.7          | 0.20       |
|                                    | Br335          | 17163.6          | 0.38       |
|                                    | Br336          | 17162.6          | 0.26       |
|                                    | Br337          | 17162.0          | 0.54       |
|                                    | Uranyl nitrate | 17163.8          | 0.22       |

## 様々な岩石への適用可能性



Yamamoto, Takahashi et al., Applied Geochim. (2008)

# 研究例2 モリブデナイト(MoS<sub>2</sub>)中のオスミウム

#### なぜ化学状態を知る必要があるのか? (価数編)



放射年代測定

時間軸を入れる上で必須 地球科学の根幹を成す

親・娘核種の安定性が前提 but 構造化学的研究 殆ど無し

## 高感度XAFS法を用いたモリブデナイト中の 放射壊変起源オスミウムおよびレニウムの状態分析



放射壊変によって無理やり生成させられたOsの局所構造?

- 娘核種の化学的安定性と密接に関係 - 信頼性の高い年代測定を行う上で不可欠

放射壊変由来の元素の性質

<u>直接に娘核種の局所構造を調べた例なし</u>

# モリブデナイト試料

## <u>モリブデナイト (Mo<sup>IV</sup>S<sub>2</sub>)</u>

- Onganja鉱山(ナミビア)
- 変成作用後の石英脈中に生成 (Kuiseb Formation schists)
- 年代: 505 ± 6 Ma (Re-Os法, molybdenite) 480 ± 25 Ma (K-Ar法, biotite in the schists) \* Osの二次的な損失無、変質無



# モリブデナイト中の微量Osの蛍光XAFS測定





## <mark>蛍光分光</mark>XAFS



# モリブデナイト中のOs

# **Os L<sub>III</sub>-edge XANES**



# モリブデナイト中のOs

## モリブデナイト中の0sの酸化還元状態



# モリブデナイト中のOs

# **Os L<sub>III</sub>-edge EXAFS**



## Os-S結合距離の比較

#### **Os-S in MoS<sub>2</sub> (EXAFS)**



## 陽イオンの結晶中での拡散

サイズ小 → 拡散速い

価数小 → 拡散速い



(Orman et al., 2001)

まとめ

## モリブデナイト(Mo<sup>IV</sup>S<sub>2</sub>)中の Reおよびradiogenic Osの化学状態

モリブデナイト中のReの局所構造: - Mo<sup>IV</sup>S<sub>2</sub>中のMoとよく一致、同じ価数 - Re<sup>IV</sup>S<sub>2</sub>中のReとよく一致、同じ価数



モリブデナイト中の放射壊変起源Os (←Re)の局所構造:

- Erlichmanite (Os<sup>II</sup>S<sub>2</sub>) や Os metal とは異なる
- Os の価数は Os(IV) or Os(III)
- モリブデナイト中の結合距離 Os-S < Re-S, Mo-S
  - → OsはMoサイトより小
  - → Reより拡散速い

2. 初期0sは低濃度

Takahashi et al., Geochim. Cosmochim. Acta (2007)

#### ■ 蛍光分光法により、XAFSの適用範囲の拡大

\*特に地球化学・環境化学試料では非常に有効

- 濃度に関する検出限界が1桁程度向上
- 分光後の蛍光X線収量は微少なため、
  高輝度・高強度光源が必要

#### Bragg型分光器とLaue型分光器のテスト結果

9 keV程度以上:

Laue型分光器+19素子Ge-SSDの組み合わせが最も有効

#### \* 今後さらに多くの微量元素の新たな地球化学・ 環境化学的知見を得る上で必須