

2009.3.10 (火) PF研究会 「蛍光XAFS研究の現状と進展」 高岡昌輝¹,藤森崇¹,大下和徹¹ 武田信生²,森澤眞輔¹ 1:京都大学大学院工学研究科都市環境工学専攻 2:立命館大学エコテクノロジー研究センター

<u>今までにわかっている主要点</u>

- 飛灰を加熱するとダイオキシン 「 類ができる。
- 生成は200°C程度から始まり、加熱温度300-400°Cで最も大量に生成する。この温度を超えると分解が顕著になる。
- 生成量は飛灰の組成によるが、 飛灰中の重金属のうち銅が生成 に関与している。
 - 銅の中では塩化銅を使用した時 に最も生成する。
 - 反応サイクルはいくつか提案さ れている。

- 実飛灰では銅はどのような化合物になっているのか?
- ■実際に、ダイオキシン類ができる時に銅 はどのように変化しているのか?
- その変化はダイオキシン類の生成を説明しうるのか?
- 提案されている反応サイクルと同じか?
 他の元素、手法により確認できるか?

Name		#1	#2	#3	#4	#5	#6	#7	#8
Cu ₂ O	(%)					16			
CuCl	(%)	23	17		69		74		
CuCO ₃ ·Cu(OH) ₂ ·H ₂ O	(%)				31				
CuO	(%)						26	36	
CuCl ₂ ·3Cu(OH) ₂	(%)	77	83	58		84			77
Cu(OH) ₂	(%)			42				64	
CuS	(%)								23
R	(%)	1.0	1.2	2.3	2.5	2.1	2.3	3.0	1.5

■XANESの線形重ね合わせ(Linear Combination Fitting: LCF)により推定
 ■酸化物および塩化物が主な構成化合物
 #7は酸化物のみ → ダイオキシン類少
 #4,6は1価塩化物が, #1-3,5,7は2価の複塩が主

実際に、ダイオキシン類ができる時に銅はど のように変化しているのか?

200mgを乳鉢にいれ、10分間良 AC: <u>Activated Carbon</u>(活性炭)
 く混合し、ディスク成型
 BN: Bron Nitride(窒化ホウ素)

SSDで最短XANESでリピート(1回あたり7分程度)

<u>模擬飛灰(CuCl₂·H₂O+AC+BN)</u>

飛灰加熱時のダイオキ シン類および関連物質 の挙動をリアルタイム で知ることは生成機構 の解明に重要

VUV-TOFMSを用い、オンラインで飛灰加熱時に生成す るガス側に放出されるクロロベンゼン測定をおこない、 銅の化学形態変化との対応をとり、生成機構解明の一助 とする

<u>CBzsの経時変化(昇温300℃)</u>

付近になれば、CBzsを放出し始めることが確認。

 塩化銅が変化する場合、 それに応じて塩素も変化 するはず
 PF BL-11B, BL-9A(TFY)
 CuCl₂・2H₂O+AC+BN

■RT-250℃:CuCl₂関連 ■300℃:<u>過渡的状態</u> ■350℃:CuCl

■この変化は、銅の場合と 対応

Photon energy (eV)

■酸化物および塩化物が主な構成化合物。CuCl₂·3Cu(OH)₂ が実飛灰 中に主に存在。模擬飛灰(CuCl₂使用)においても加熱後のサンプ ルに存在。

■実飛灰、模擬飛灰(CuCl₂使用)のどちらにおいても、2価の銅化 合物が200℃以下の低温から1価の銅化合物、0価の単体にまで還元 される。→ ダイオキシン類が生成し始める温度と合致。

■実飛灰・模擬飛灰(CuCl₂使用)加熱時はCuClが生成後、。エチレン塩素化工業触媒と類似 <u>→ 直接塩素化・オキシクロリネーション反応。</u>

■リアルタイム計測より、200°C付近からM1CBzのピークが現れ、 塩素化。→ ダイオキシン類の生成し始める温度と合致。塩素化が 生じている。

■<u>塩素のXANESからも銅に対応する変化を裏付け。クロロベンゼン</u> <u>類の生成量とXANESからのC-CI結合割合との対応から、C-CI結合</u> <u>の裏付け</u>

■ 主な共同研究者

- 京都大学工学研究科材料工学専攻: 山本孝 助教
- 京都大学工学研究科分子工学専攻: 田中庸裕教授
- SPring-8:宇留賀朋哉 博士、谷田肇 博士、加藤和男 博士
- Photon Factory:稲田康宏 准教授、北島義典 助教
- 京都大学工学研究科都市環境工学専攻環境デザイン工学講 座スタッフおよび学生
- 主な研究ファンド
 - 環境省廃棄物処理等科学研究補助金(K1514+K1632)
 - JSPS科学研究費補助金若手研究(A)(17681008)

■ 主な協力会社

- 島津テクノリサーチ(ダイオキシン類分析)
- 三菱重工業横浜研究所(CBzリアルタイム計測)