High-resolution photoemission study of quasi one-dimensional half-metal NaV₂O₄

Dept. Physics, Tohoku Univ.^a, WPI, Tohoku Univ^B, Natl. Inst. Mat. Sci.^c
T. Qian^a, K. Nakayama^a, Y. J. Sun^a, T. Arakane^a, T. Sato^a, T. Takahashi^{a,B},
K. Yamaura^c and E. Takayama-Muromachi^c

Very recently, synthesis of a new vanadium oxide NaV_2O_4 was reported [1]. This compound exhibits a quasi one-dimensional (1D) metallic nature below the antiferromagnetic (AF) transition temperature T_N . Moreover, the band calculation suggests a half-metal-like band structure in the low temperature AF state. Hence it is interesting to study the electronic structure of the quasi-1D half-metal compound NaV_2O_4 .

We have carried out high-resolution photoemission spectroscopy (PES) on NaV₂O₄. The valance band PES spectrum consists of well-separated two main bands; one originates in the V 3d states located around the Fermi level $(E_{\rm F})$ and the other is due to the O 2p states situated far away from E_F in qualitatively good agreement with the band calculation. For all measured temperatures from 5 to 300 K, the spectral intensity near $E_{\rm F}$ is strongly suppressed and shows a power-law behavior, implying the Tomonaga-Luttinger-liquid lineshape characteristic of quasi-1D materials. The anomalous exponent α shows a considerable temperature dependence, in particular around $T_{\rm N}$. The temperature dependence of α is also consistent with the variation of the transport anisotropy with temperature. There results suggest a close relationship between the electronic structure near $E_{\rm F}$ and the magnetic order and/or the dimensional crossover.

[1] K. Yamaura et al., Phys. Rev. Lett. 99, 196601 (2007).