

産総研のレーザーコンプトン線源を用いた イメージング研究

〇池浦広美、黒田隆之助、安本正人、豊川弘之、小池正記 産業技術総合研究所

丸山耕一 秋田工業高等専門学校 Advanceののの本語の新一

> 森浩一 一一一茨城県立医療大学

> > 岡寛 聖マリアンナ医科大学

> > > ERL研究会 2007.07.10

はじめに

- ・ 産総研LCS-X光源利用実験の概要
- PF BL14C光源との比較
- 解像度の光源形状依存性
- 医療用X線源との比較Stitute of
- ラット腰椎の屈折コントラストイメージング
- イメージング測定例chnology
- 今後の予定

Electron energy	20 ~ 40 MeV				
Energy spread	0.2%				
Bunch charge/bunch	0.8 nC				
Bunch length (rms)	3 ps				
Beam size (σ _x /σ _y)	40/30 μm				

Ti:Sa レーザー (CPA)

Wave length	800 nm
Energy/pulse	140 mJ
Pulse length (rms)	100 fs
Beam size (σ _x /σ _y)	30 μm

LCS-X線装置の概要

LCS-X線の特長と利用

AISTの2	スペック		利用			
エネルギー	10 ~ 40 keV	ニー エネルギー可	変			
単色性	~ 5% (dE/E)	準単色				
フラックス(@165deg)	10^7 (*10 ⁵) photons/s	高輝度	イメージング			
フラックス(@90deg)	10 ⁶ photons/s	nstitute o	動的現象(北亚海			
^{時間幅} Advar	150 fs ~ 3 ps		戦的現象(非平衡) 状態)の追跡			
取り出し角	15 mrad	広視野 ロ	医療診断			
光源サイズ	40×40 μ m (σ) CO	微小光源	屈折コントラスト			
繰り返し	10pps	ST .				
安定性	~ 6% (15min)	偏光特性				

*実際に使用するフラックス

吸収端イメージング

*	<u>57</u> La	<u>58</u> <u>Ce</u>	<u>59</u> <u>Pr</u>	<u>60</u> <u>Nd</u>	61 Pm	<u>62</u> <u>Sm</u>	<u>63</u> <u>Eu</u>	<u>64</u> <u>Gd</u>	<u>65</u> <u>Tb</u>	<u>66</u> <u>Dy</u>	<u>67</u> <u>Ho</u>	$\frac{68}{Er}$	<u>69</u> <u>Tm</u>	<u>70</u> <u>Yb</u>	$\frac{71}{Lu}$
**	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	<u>Th</u>	Pa	<u>U</u>	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	N₀	Lr

解像度の光源形状依存性の実験

スリット 6(横)x6(縦)mm 拡大率 1

Advanced Indus

ビーム形状 114(横)×85(縦)ミクロン 縦横比1.34

- 試料中の境界における微小な密度差による屈折を 検出して画像化。
- 吸収がほとんどない場合でも鮮鋭な画像が得られ、
 生体組織においては、特に組織と空気や骨との境
 界を明確に可視化。

• 標準的なX線イメージング

撮像物全体を単一画像としてとらえるため、あらゆるものが一つの二次元画像 へ重なる。

・トモシンセシス

ー回の断層走査において、対象物をX線の照射角度を変えながら撮影し、任意の断層面を再構成する。低被曝で、障害陰影の無い画像が得られる。

ICチップ 33keV LCS-X @住重

X線管を用いてトモシンセシスやパルスイメージングの立ち上げを行っている。
 屈折コントラストイメージング実験が可能。

理学のX線管

パルスイメージング用検出器 (中性子標準グループの好意 により借りています)

全長3mのハッチ

X線チャートの測定から、ウィグラーX線より約3桁フォトン数 <u>/70 µ m²/sが小さい。 X線管との比較から10min照射で1</u> ~2mAs相当。 →光源強度は2~3桁上がる予定。 XCCDを用いて、 $60 \sim 80 \mu$ mの解像度の画像を取得。 "14Cレベル"の光源が実現可能!! ラット腰椎の屈折コントラストイメージを測定。 →屈折効果から光源の高い干渉性を示唆。 今後、屈折コントラストを利用したトモシンセシスやパルスイ メージングを行っていく。