放射光X線による100ピコ秒時間分解研究の現状と フェムト秒時間分解実験への期待

- はじめに
- 100ピコ秒X線研究の現状
- サブピコ秒X線への期待

光源のエネルギーとパルス幅

Bond softening in Bismuth (SPPS)

Phonon-polariton wave in LiTaO₃ (ALS)

Cavalleri at al. (2006) Nature 442 664.

Fritz et al. (2007) Science 315, 633.

Magnetic excitations in permalloy squares (SLS)

Raabe et al. (2005) Phys. Rev. Lett. 94,217204

Excited State

Ni(II) porphyrin (APS) Chen et al. (2001) Science 292, 262.

Time Domain Science with SR 最近の報告例

C₂H₄I₂ in methanol (ESRF) Ihee, et al., (2005) Science 309, 1223.

Mutant myoglobin (ESRF) Schotte et al.(2003) Science 300, 1944.

Femtosecond X-ray Pulses at 0.4 Å Generated by 90° Thomson Scattering: A Tool for Probing the Structural Dynamics of Materials

Schoenlein et al. (1996) Science 274, 236.

Fig. 1. Schematic of the femtosecond Thomson scattering geometry.

Fig. 2. False-color CCD image of the spatial profile of a 30-keV (0.4 Å), \sim 300-fs x-ray pulse striking a phosphor screen at a distance of 80 cm from the scattering point. Vertical and horizontal lineouts indicate a beam size of \sim 12 mm by \sim 8 mm (FWHM).

 $\theta_0 = 0$

Fig. 3. Spectral measurements of the femtosecond x-rays at observation angles of $\theta_0 = 0 \text{ mrad}$, 5 mrad, and 10 mrad ($\phi_0 = \pi/2$). The detector lies in the *yz* plane. Also shown (solid lines) are theoretically predicted spectra corrected for detector sensitivity and window transmission as described in the text.

Electron: 50 MeV, 1.3nC, 20 ps (FWHM) Laser: 60mJ, 100fs, 10Hz, 800 nm X-ray: 30 keV, ~300fs, 2 x 10⁵ photons/pulse/15% "Rapid advances in diode-pumped, solid state lasers and superconducting linac structures may provide substantially higher x-ray brightness in future Thomson sources by operating at very high repetition rates."

1996

Electron: 50 MeV, 1.3nC, 20 ps (FWHM) Laser: 60mJ, 100fs, 10Hz, 800 nm X-ray: 30 keV, ~300fs, 2 x 10⁵ photons/sec/15%b.w.

2007

Electron: 60 MeV, 0.1nC, 0.1 ps Laser: 10 mJ, 0.1 ps, 1 kHz, 800 nm X-ray: 42 keV, 1 X 10⁹ photons/sec/10%b.w. !!

Laser-Compton X-ray source at ERL test facility (60-150MeV)

 $E_{Xray} = 2\gamma^{2}E_{Laser}(1-\cos\theta_{L})/(1+\gamma^{2}\theta^{2})$ Flux = (N_LN_e/wh)(L_{eff}/L_b) σ_{c}

E_{Laser} = 1.55eV, E_{electron} = 60 MeV (γ=117), θ_L = 90 degree のとき、 軸上(θ=0)でE_{xray} = 42.4 keV

レーザーパルス(1.55eV, 10mJ)のフォトン数: $N_L = 4 \times 10^{16}$ photons 電子バンチ中の電子数(60MeV, 0.1nC): $N_e = 6 \times 10^8$ electrons 電子バンチの水平幅: $w = 50 \times 10^{-6}$ m 電子バンチの高さ: $h = 50 \times 10^{-6}$ m コンプトン散乱断面積: 1×10^{-28}

1パルスあたり、 Flux = 1 x 10⁶ phs/pulse/10%b.w. 1 kHzのとき、 Flux = 1 x 10⁹ phs/sec/10%b.w.

既存放射光との比較

同じエネルギーバンド幅、繰り返し周波数で比較すると(10Wレーザー使用)、

- AR-NW14A: 10¹² phs/s/10%b.w. @ 1kHz

– Compact ERL: 10⁹ phs/s/10%b.w. @ 1kHz

- エンハンスメント共振器が使用できると、(小林 先生(産総研)の昨日の講演、1GHz、10µJ) レーザー出力は10Wから10kWへ。単位時間当 たりのX線フォトン数は1000倍。既存放射光と 同等以上。
 - -10^9 10¹² phs/s/10%b.w.

Source	Pulse length (fs)	Repetition rate (Hz)	Photon flux	Energy range
Compact ERL/Laser- Compton Source (1nC, 10kHz)	~150	1000	1 x 10 ⁹ phs/sec/10%b.w. 1 x 10 ⁶ phs/sec/0.1%b.w. 1 x 10 ⁶ phs/pulse/10%b.w.	10-100 keV
PF-AR NW14 (80nC, 794kHz, 60mA)	100 x 10 ³	794 x 10 ³	1 x 10 ¹⁵ phs/sec/10%b.w. 1 x 10 ¹² phs/sec/0.1%b.w. 1 x 10 ⁹ phs/pulse/10%b.w. 1 x 10 ⁶ phs/pulse/0.1%b.w.	5-30 keV
KEK-ERL Low-rep. mode (1nC, 10kHz, 0.01mA)	100 – 1000	10000	1 x 10 ¹¹ phs/sec/10%b.w. 1 x 10 ⁷ phs/sec/0.1%b.w. 1 x 10 ⁷ phs/pulse/10%b.w.	5-30 keV
Laser Bunch Slicing (ALS upgrade)	200	40000	5 x 10 ⁷ phs/sec/0.1%b.w.	0.2-10 keV
Laser-produced plasma X-ray	~100	10	6 x 10 ¹⁰ phs/pulse/4 π sr	8 keV (Cu-Kα)
Laser / high harmonic generation	100 - 0.1	10 - 10000	~ 10 ⁸ phs/sec/0.1%b.w.	10 eV-1 keV
Sub-Picosecond Pulse Source (SLAC)	80	10	2 x 10 ⁷ phs/pulse/1.5%b.w.	8-10 keV
KEK PF-BT line	500	20	~ 10 ⁷ phs/pulse/10%b.w.	0.2-10 keV
X-FEL (LCLS, SCSS, European XFEL)	230	120	2 x 10 ¹² phs/pulse/0.2%b.w.	1-10 keV

X-ray beam characteristics from superconducting-linac-based Laser-Compton X-ray sources

- High repetition frequency (< 1GHz)
- Hard X-ray available (~ 10-100 keV)
- Short pulse duration (~ 100 fs)
- Large beam divergence (~ 10 mrad)
- Relatively high average photon flux (~ 10¹⁰ photons/sec/~10%b.w. @ 10 kHz)

100ピコ秒X線研究の現状と サブピコ秒X線への期待

Nozawa et al. J. Synchrotron Rad. (2007). **14**, 313-319.

PF-AR NW14A 通年大強度単バンチ 時間分解実験に最適 ERATO腰原非平衡ダイナミクスプロジェクト

Bond softening in Bismuth (SPPS)

Fritz et al. (2007) Science 315, 633.

С

-100 ps

Photo-induced Phase Transition

Chollet et al. (2005) Science, 307, 86.

C₂H₄I₂ in methanol (ESRF) Ihee, et al., (2005) Science 309, 1223. Mutant myoglobin (ESRF)

Schotte et al.(2003) Science 300, 1944.

Motivations for femtosecond X-ray ex.1) coherent phonon

Ultrafast Bond Softening in Bismuth: Mapping a Solid's Interatomic Potential with X-rays Fritz et al. (2007) Science, 315, 633.

Laser Power: 0.7 (green), 1.2 (red), 1.7 (blue), and 2.3 (gray) mJ/cm²

Shockwave-induced lattice deformation at NW14A

レーザー誘起衝撃圧縮下の CdSのナノ秒分解白色X線回折

Kouhei Ichiyanagi

・CdS単結晶は約3万気圧でウルツ鉱型から岩塩型構造になることが知られている。 ・時間分解分光衝撃実験によってナノ秒オーダーで変化し、寿命の短い中間相が存在することが示唆されている。

M. D. Kundson and Y. M. Gupta, et al. Phys. Rev. B. 59. 11704 (1999).

ナノ秒分解白色X線回折実験の セットアップ

実験条件 レーザー YAG 1064 nm, 850 mJ, 8 ns, 10 Hz Spot size 400 µ m X-ray 100 ps, white X-ray, 1 kHz Spot size 250x250 µ m

入射X線スペクトル

Motivations for femtosecond X-ray ex.2) photo-induced phase transition

Gigantic Photoresponse in 1/4-Filled-Band Organic Salt (EDO-TTF)₂PF₆ Chollet et al. (2005) Science, 307, 86.

Toward time-resolved electron density analysis @ NW14A

Matthieu Chollet

> MEM analysis 300K 700 me⁻/A³

沖本洋一先生 「強相関電子材料における光誘起相転移の 超高速ダイナミクス」 Motivations for femtosecond X-ray ex.3) reaction dynamics in solution

Ultrafast X-ray Diffraction of Transient Molecular Structures in Solution Thee et al. Science (2005) 309, 1223.

Reaction dynamics in solution @ NW14

Collaboration with Hyotcherl Ihee Group (KAIST, Korea)

Solution scattering profiles

Before Calibration; detx=55

• After Calibration; new detx=51.8

Pure Cyclohexane Static measurement

UV spectroscopy revealed dumped oscillations in femtosecond time domain Caging and Geminate Recombination Following Photolysis of Triiodide in Solution

Gershgoren et al., J. Phys. Chem. A 1998, 102, 9-16

Figure 1. Transient transmission scans of triiodide in ethanol solution with both UV pump and probe pulses. The inset depicts the first 8 ps of probe delays, exhibiting a rapid decay of the initial bleach superimposed by impulsive Raman-induced spectral modulations. See text for details.

田原太平先生 「超高速反応する分子の核波束運動実時間観測と 励起状態ポテンシャル曲線のトポロジー」 Motivations for femtosecond X-ray ex.4) proteins

Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography Schotte et al. Science (2003) 300, 1944.

Myoglobin (Mb)

- Stores molecular oxygen in muscle
 M.W. ~ 16,000
 - 1290 atoms
 - 153 amino acids
 - Contains 1 heme
- Reversibly binds O₂, CO, NO etc

Fe(II) porphyrin (heme) in myoglobin MbL + hv Mb + L (L=O₂, CO, NO, etc)

++- ++ ++ Fe(II) d⁶ LS

Photo-switchable

Structural distortion causes changes in electronic structure

Experimental setup

X-ray: 0.827 Å (15 keV) Laser: YAG SHG (532 nm) 15 kHz, 10 mW/mm² Sample temperature: 40 K Detector: marccd165

Data statistics: Resolution: 50 – 1.1 Å No. of observations: 138,198 No. of unique refs: 37,292 Rmerge: 3.3 % Completeness: 94.7 %

Redundancy: 3.7

Ayana Tomita

Visible absorption spectra of Mb and MbCO

MbCO + hv Mb + CO

Electron density of the heme before and after photo-excitation

Cyan: MbCO Magenta: Photo-excited

MbCO and Photo-excited overlapped

Switching protein structure by photo-excitation

Cyan: MbCO Magenta: Photo-excited

Summary

- X線を用いた時間分解測定法は、非平衡状態(短寿命種)の構造情報、電子密度分布を 直接観測できることが最大の利点。
- 現在の100ピコ秒分解能では不十分であり、
 サブピコ秒分解能が必要な実験系が多く存在する。
- そのためには、コンパクトERLによるサブピコ 秒X線光源が極めて有望。

Project members @ KEK NW14

Shunsuke Nozawa (ERATO)		Tokushi Sato (TI TECH DC)	
Ryoko Tazaki (ERATO)		Ayana Tomita (TITECH DC)	
Hirohiko I chikawa (ERATO)		Sachiko Maki (TI TECH MC)	
Laurent Guérin (ERATO)		Jiro I tatani (Group Leader, LBNL)	
Kouhei Ichiyanagi (KEK PD)	1	Masahiro Daimon (Research Manager)	S
Matthieu Chollet (JPSJ PD)	SOM	Shin-ya Koshihara (Project Director)	

Collaborators

Beam line NW14

- KEK
 - Hiroshi Sawa
 - Hiroshi Kawata
 - Takeharu Mori
 - Shigeru Yamamoto
 - Kimichika Tsuchiya
 - Tatsuro Shioya
 - and all Photon Factory Staffs

Myoglobin

- Yokohama City University
 - Sam-Yong Park

(EDO-TTF)₂PF₆

- Kyoto University
 - Hideki Yamochi
 - Gunji Saito

Time-resolved solution scattering

- Korea Advanced Institute of Science and Technology
 - Hyotcherl I hee
 - Kyung Huan Kim
 - Jae Hyuk Lee

Other collaborations

- Tokyo Institute of Technology
- The University of Chicago
- Univ. Rennes 1
- State Univ. of New York at Buffalo
- Univ. of Copenhagen
- Laurence Berkley National Lab.
- Oxford Univ.
- Tohoku Univ.
- Osaka City Univ.