強相関電子材料における光誘起相転移の 超高速ダイナミクス

東工大院理工 沖本洋一

Collaborators

¹CERC-AIST, ²Univ. of Tokyo
 松原正和1、松崎弘幸^{1,2}、富岡泰秀¹、I. Kezsmarki²、
 小笠原剛¹、岡本博^{1,2}、十倉好紀^{1,2}
 東工大院理工
 遠藤将人、腰原伸也
 東北大多元研
 有馬孝尚

ERL研究会「コンパクトERLが拓く世界」

1. Introduction...

ペロブスカイト型Mn酸化物の電荷整列絶縁体一強磁性 金属相転移とPhoto-induced phase transition (PIPT)

- フェムト秒レーザを用いた
 電荷整列絶縁体Gd_{0.55}Sr_{0.45}MnO₃結晶の
 超高速ポンププローブ分光
- ① 反射率変化 △ R/R *電荷の応答*

Y.Okimoto *et al.*, JPSJ **76**, 043702 (2007).

② カー回転 △ *θ*スピンの応答

M. Matsubara, Y.O. et al., submitted.

- 「光誘起強磁性金属状態」はどのように光で見えるのか?
- ・その生成・緩和の時間スケールはどうなっているのか?
- 3. 光誘起強磁性金属相の緩和状態は???

Introduction

マンガン酸化物 ⇒ 全く異なる二つの基底状態

Miyano *et al.*, PRL (1998): current infection is essential to keep the photo-induced FM domains. ⇒ 光照射によって発生したドメインはそのままでは維持 できず、始状態へ緩和して行く

フェムト秒レーザパルスを用いた時間分解反射分光

時間分解ポンププローブ反射分光

Target: Gd_{0.55}Sr_{0.45}MnO₃

① Gd_{0.55}Sr_{0.45}MnO₃の時間分解測光: 反射率変化

•Response:
$$f(t) = \underbrace{a_1 e^{-\frac{t}{\tau_1}}}_{$$
高速成分
$$\underbrace{b_1 (1 - e^{-\frac{t}{\tau_1}})}_{Flat$$
成分

•Spectral function: 畳み込み (★) with pump & probe pulse (gaussian-type) $I(t) = [f(t) \star e^{-\frac{t^2}{\tau_{pump}^2}}] \star e^{-\frac{t^2}{\tau_{probe}^2}}$

光誘起状態の考察

Linear combination of the initial and final states:

$$\varepsilon(z) = (1 - \gamma e^{-z/d})\varepsilon^{\rm CO} + \gamma e^{-z/d}\varepsilon^{\rm PIPT}$$

 ε ^{CO}: dielectric constant of GdSrMnO₃ (*known*) ε ^{PIPT}: dielectric constant of the photo-induced phase (*unknown!*)

 \mathcal{Z}

△ R/R は *ε*^{PIPT}(=(*n*^{PIPT}-*i k*^{PIPT})²)の関数として計算される。
(多層膜の複素フレネル係数の計算)

光誘起状態の誘電関数 *ε* PIPTの算出

光誘起相の電子状態……光学伝導度スペクトル

⇒光学伝導度(光吸収)スペクトル: σ^{PIPT}=ωIm ε^{PIPT}/4 π

電荷整列絶縁体マンガン酸化物 Gd_{0.55}Sr_{0.45}MnO₃に対して超高速分光を行った。

★<u>反射分光の結果</u>:

- ・反射率スペクトルの瞬間的(パルス幅以内)変化
- ・スペクトルの形状の変化:絶縁体的⇒強磁性金属的
 ・緩和の時間スケール ~240 fs, at 0.12 eV

★カー回転測定の結果:

- ・光照射により正のカー回転角⇒強磁性ドメインの生成
- ・ *△ Θ*は~1psかけて増大し、~10psかけて減衰

マンガン系の光誘起相転移⇒

光誘起強磁性ドメインの緩和 と ドメインが回転し磁場方向にそろう効果 の二つの要因で説明可能