09 Jul 2007

ERL meeting

赤外光励起による半導体中 の不純物拡散の制御

Control of diffusion in seiconductors by IR excitation –

白井光雲 大阪大学、産業科学研究所 産業科学ナノテクセンター

Koun Shirai Nanoscience and Nanotechnology Center ISIR, Osaka University

Outline

1 バックグラウンド

・産業応用からの

・エネルギー緩和機構からの

2 赤外光励起による不純物拡散の試み

3 選択的拡散を目指したレーザー設計

文部科学省、独創的革新技術開発研究、「赤外レーザ照射による半導体中 不純物の選択的低温拡散技術の研究」代表、金田寛(富士通)より

特定の不純物の熱振動のみ加熱

レーザに共鳴する不純物のみ拡散

●不純物種を選択できる ●低温で拡散できる ●拡散を急停止できる

Laser-frequency dependence of ¹⁸O diffusion enhancement

H. Kaneta (Fujitsu Ltd.)

赤外光励起のメリット

•電子励起を引きおこさないことが必要な応用に取って重要

副作用がない

原子移動、拡散、、、

ラマン過程より直接的

•特定の原子種の選択性

不純物振動モードがうまく選択できると、その原子種のみを 変化

電子緩和に比べて原子緩和が遅い

Story of the ghost peak

W. Richter and K. Ploog, Phys. Status Solidi B **68** (1975) 201.

unusual properties

•
$$\Delta \omega < 1 \text{ cm}^{-1}$$

- librational mode
 why so high ω ?
- no pressure dependence no anharmonicity ?

Phonon decay rate

calculation of $\Delta \omega$

	j	Δω/ω	ρ ₂	γ	ωι/ω0	В	ch.
A _{1g}	36	1.7	1.1	0.142	0.22	1.21	11+11(40)
	33	1.2	0.56	0.199	0.21	1.7	29+2 (8)
	20	0.60	0.26	0.103	0.22	1.51	7+2 (16)
	17	0.90	0.22	0.271	0.22	1.52	8+2 (30)
Eg	35	1.2	1.04	0.106	0.22	1.25	12+9 (9)
	30	0.89	0.38	0.199	0.21	1.41	+3 (16)
	23	0.86	0.27	0.231	0.22	1.45	6+6 (14)
	19	0.85	0.25	0.186	0.22	1.43	8+1 (27)
	11	0.62	0.36	0.078	1.19	0.25	20-1 (10)
	6	0.10	0.58	0.008	1.90	0.18	33-6 (9)

K. Shirai, H. K.-Yoshida, J. Phys. Soc. Jpn. 67 (1998) 3801

最大の問題点 ―― 光源が限られる

計算機シミュレーションの必要性

 $\Delta \omega = 17.05 \text{ cm}^{-1}$

Resonance effect on O mode

Resonance effect on B mode

Power consideration

$$au_{ ext{phonon}} < au_{ ext{pulse}} < au_{ ext{decay}}$$

酸素拡散

 $D = D_0 \exp(-Q/kT)$

T [K]

 $D [cm^2/s] = 0.194 \exp(-2.54[eV]/kT)$

T. Y. Tan and U. Gösele, Appl. Phys. A37 1 (1985)

	F) (7		T [eV]	D [cm ² /s]	τ [S]	L _D [µm]
[K]	[eV]	D [cm²/s]	0.137	3.0 x 10 ⁻¹⁴	1	0.3
1000	0.086	3.0 x 10 ⁻¹⁴		-	4.0-1	
1600	0.137	1.9 x 10 ⁻⁹			10-1	0.1
			0.172	7.6 x 10 ⁻⁸	1	2.7
2000	0.172	7.6 x 10 ⁻⁸		-	10 ⁻²	0.27
2500	0.215	1.4 x 10 ⁻⁶	0.015	1 4 × 10-6		11.0
3000	0 258	1 0 x 10 ⁻⁵	0.215	1.4 X 10 °	I	
0000	0.230	1.0 × 10			10 ⁻³	0.3

原子あたり
$$P_{\text{atom}} = \frac{\Delta E}{\tau}$$
 の熱平衡からのずれ 0.2 eV
フォノン緩和時間 10 ps

 $P_{\text{atom}} = 3 \times 10^{-9} [\text{W/atom}]$

不純物濃度
$$n_i = 1 \ge 10^{18} [/cm^3]$$
 $P_{abs} = n_i \ge P_{atom} = 3 \ge 10^9 [W/cm^3]$
吸収係数 $\alpha = 1 \ge 10^4 [cm^{-1}]$ $I_{in} = P_{abs}/\alpha = 3 \ge 10^5 [W/cm^2]$

$$P_{pulse} = 3x10^5 \text{ W/cm}^2$$

SPring-8 BL43IR

.

$$\tau_{pulse} = 40 \text{ ps}$$

d> = 45
$$\mu$$
W by power meter
$$I_{pulse} = \frac{T}{\tau_{pulse}} \times < >$$

$$I s間の実効的照射時間$$

$$40 \text{ ps x } \frac{1}{25 \text{ ns}}$$

$$\exists -\Delta 25 \text{ kW/cm}^2 \cdot \text{pulse}$$

$$= 25 \text{ kW/cm}^2 \cdot \text{pulse}$$

FEL

SPring-8利用者懇談会研究会 「赤外光励起による新物質プロセッシング」

	require-	BL43IR	FEL
	ment	(SPring-8)	(ISIR)
l _{pulse} [kW/cm²]	300	25	100
<i>t</i> _d [s]	0.001	1	3600

Estimation of electric field

$$f_{AC} = 1 \times 10^{-2} (\text{Ry/Bohr})$$

atomic units
$$Q^* = 1$$
$$E = \frac{1}{4\pi\varepsilon_0} \frac{e}{a_0^2} = 5.1 \times 10^9 (\text{V/cm})$$
$$I = \frac{1}{2}\varepsilon_0 cE^2 = 3.51 \times 10^{16} (\text{W/cm}^2)$$

	パルス幅	周波数	ピークパワ (MW)	パワー密度 (MW/cm ²)	積算照射時間			
マクロパルス	10 µ	12.5						
マイクロパルス	0.23 p	2.856 G	6					
波長 μm	0.87	6						
東京理科大学								
マクロパルス	1μ	10						
マイクロパルス	2 p	2.856 G	4-12.5					
波長µm	4	16						
大阪大学工学研究科	Inst. FEL							
マクロパルス	20 µ	10						
マイクロパルス	10 p	2.856 G	5					
波長µm	5	22						
大阪大学産研								
マクロパルス	1.8 µ	60						
マイクロパルス	20-30 p	1.1 G	1	0.1	1			
波長µm	10	100						