超高速反応する分子の核波束実時間観測と 励起状態ポテンシャル曲面のトポロジー

Real-Time Observation of Nuclear Wavepacket Motion of Reacting Molecules and Topology of Potential Energy Surfaces

> Molecular Spectroscopy Laboratory, RIKEN JAPAN

ER研究会, July 9, 2007

for Gaussian

Observation of Nuclear Wavepacket Motion

Time-domain vs Frequency domain

MOLECULAR SPECTROSCOPY LAB

RIKEN

Heterodyned Impulsive Stimulated Raman of CCl₄

Time-domain vs Frequency domain

RIKEN

Heterodyned Impulsive Stimulated Raman of CCl₄

Time-domain vibrational data is equivalent to frequency-domain data. They are converted to each other by Fourier transformation.

Fourier Transform (Imaginary part, $Im [\chi(\omega)]$)

Molecular Spectroscopy Lae

Time-domain vibrational spectroscopy is very powerful to study excited-state molecules, especially when they have only very short lifetimes.

We can get insight about reactive potential energy surfaces, which are not simply harmonic!

Ultrafast reactions are weird special problems?

Nuclear Wavepacket Motion of Potential Energy Surface

MOLECULAR SPECTROSCOPY LAB **Photodissociation Excited-State Proton Transfer Photoisomerization** Diphenylcyclopropenone 10-Hydrobenzoquinoline cis-Stilbene hν, hν hy parallel perpendicular assist

Observation of nuclear wavepacket motion of "reacting" short-lived excited states

- Photoisomerization of *cis*-stilbene
- Photo-induced structural change of bis(2,9-dimethyl-1,10-phenanthroline)copper (I)

Photoisomerization of *cis*-stilbene

Stilbene: A Fundamental Molecule in Organic Photochemistry

Performance

NOPA

Tunability	500 – 750 nm
Pulse Duration	10 – 15 fs
Pulse Energy	10 µJ
Rep. Rate	1 kHz

Two Color Pump-Probe Experiments

Pump	250 - 375 nm, 20 fs	
Probe	500 - 750 nm, 10 - 15	fs
Time Resolu	tion 30 fs	
Sensivitity	0.03 mOD	

Apparatus: Tunable Two-Color Pump-Probe Spectrometer based on NOPA

MOLECULAR SPECTROSCOPY LAB

C

RIKEN

Time-Resolution of UV-vis Two Color Pump-Probe: 30 - 40 fs (Cross Correlation)

Photoisomerization of Stilbene

Photoisomerization of Stilbene

Absorption Spectra of *cis*-Stilbene

Time-Resolved Absorption Signal of *cis*-Stilbene

MOLECULAR SPECTROSCOPY LAB

pump 315 nm; probe 660 nm; 5x10⁻³ M

Time-Resolved Absorption of *cis*-Stilbene

RIKEN

The wavepacket motion is insensitive to the change of solvent.

Wavepacket Motion in Photoisomerization of cis-Stilbene

RIKEN

MOLECULAR SPECTROSCOPY LAB

The observed wavepacket motion is "perpendicular" to the reaction coordinate.

Observation of Raman-Induced Wavepacket Motion in S₁ *cis*-Stilbene

Observation of Raman-Induced Wavepacket Motion in S₁ *cis*-Stilbene

Mutlidimensional S₁ Potential of S₁ *cis*-Stilbene

Photoinduced Structural Chage (Jahn-Teller Distortion) of Cu complex

Bis(2,9-dimethyl-1,10-phenanthroline)copper (I): A Fundamental Molecule in Inorganic Photochemistry

Bis(2,9-dimethyl-1,10-phenanthroline)copper (I):

MOLECULAR SPECTROSCOPY LAB

[Cu(I)(dmphen)₂]+

Promising as the photocatalyst and photosensitizer in solar energy conversion

© Candidate for molecular switch

© Real-time observation of Jahn-Teller Distortion

Flattening distortion takes place.

Femtosecond Time-Resolved Fluorescence Spectra

Fluorescence Spectral Change Corresponding to Flattening Distortion

RIKEN

Ultrafast Pump-Probe Signal of [Cu(dmphen)₂]⁺

Direct Information on Structural Change

Pulse width > 100 fs (or 1 ps)

Structural Information of Short-Lived Transients

Pulse width < 100 fs (or 1 ps)</p>

Direct Observation on Coherent Motion

Seeing what we could not see before creates new science.

Collaborators

Molecular Spectroscopy Laboratory, RIKEN

Satoshi TAKEUCHI Shoichi YAMAGUCHI Kunihiko ISHII Haruko ISHII Haruko HOSOI Kentaro SEKIGUCHI Munetaka IWAMURA Hidekazu WATANABE Takumi NAKAMURA Satoshi NIHONYANAGI Sobhan SEN Pratik SEN

Prof. Sanford RUHMAN (Hebrew Univ.)

Akiko ZUSHI

Members, April 2007