Laser-Compton Scattering Experiments at the ATF

J.Urakawa, KEK

1. Polarized e⁺ Source based on Compton scattering,

- 2. CW laser wire results,
- 3. Pulsed laser wire development,
- 4. Polarized γ-ray generation,
- 5. Compact X-ray source,

6. Key components for photon beam source based on laser-Compton scattering.

1

1. Polarized e⁺ Source based on Compton scattering

Experiment at KEK-ATF ATF: Accelerator Test Facility for ILC built at KEK

Collaborating institute: Waseda, TMU, KEK, NIRS, and AIST

T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio, and I. Yamazaki

1.28 GeV S-band Linac

Compton Chamber

Positron: production, selection, and polarimetry

Ne+(design) = 3×10^4 /bunch Pol(expected) = 80% As

Asym (expected) = 0.95%

2. CW laser wire results

CW Laser wire beam size monitor in DR

300mW 532nm Solid-state Laser fed into optical cavity

14.7µm laser wire for X scan
5.7µm for Y scan
(whole scan: 15min for X,
6min for Y) 7

optical cavity resonance is kept by piezo actuator

Beam profile by Laser wire

$$\sigma_e^2 = \sigma_{\text{meas}}^2 - \sigma_{lw}^2$$
$$\epsilon\beta = \sigma_e^2 - [\eta(\Delta p/p)]^2$$

 β :measured by *Q*-trim excitation

3. Pulsed laser wire development

Experimental results (Pulse Laser Storage)

Laser:

Mode Lock: Passive	
	SESAM
Frequency:	357MHz
Cavity length:	0.42 m
Pulse width: 7.3 p sec	
	(FWHM)
Wave Length:	1064 nm
Power:	~ 6W

SESAM: <u>SE</u>mi-conductor <u>Saturable</u> <u>Absorber</u> <u>Mirrors</u>

Ext. Cavity:

Cavity: Cavity length: Mirrors: Reflectivity: Curvature:

99.7%, 99.9% 250 mm ($\omega_0 = 180 \,\mu$ m)

Super Invar

0.42 m

Storage of laser pulse

Resonance condition :

The relationship with laser and cavity :

The enhancement factor is the function of reflectivity, ΔI and laser pulse width.

• Finesse: **R** = 99.9%

Pulsed Laser and Electron Beam Collision to measure bunch length

Pulse Laser Wire

14

EXPERIMENTAL SETUP : Optics

4. Polarized γ-ray generation using Optical Stacking Cavity

Non planer cavity with 4 mirrors in LAL

confocal²³

γ-ray Generation with Laser Pulse Stacking Cavity (Hiroshima-Waseda-IHEP-KEK)

5. Compact X-ray source

43MeV end station to separate X-ray and e-beam. 33keV X-ray is deflected by Crystals.

Pulsed laser stacking chamber

Laser Undulator Compact X-ray (LUCX) Project at KEK-ATF

6. Key components for photon beam source based on laser-Compton scattering World-Wide-Web of Laser Compton

Re-use Concept

28

Proposed by Posipol Group at Snowmass 2005.

One laser feeds 30 cavities in daisy chain

New Idea by UK

Use a Misaligned Multipass Cavity

Mirror spacing determines the inter-pulse interval to match to 2.8ns

Slight mirror tilt from perfect auto-collimation or slight shear of one lens gives scanning with equally spaced foci and a controllable spacing

PC gate switches pulse into cavity

Need to keep round-trip losses very low to ensure sufficient passes at sufficient power

Other designs possible

Laser-wire at ATF-EXT By Grahame Blair (RHUL) et al.

6min 43s

Wire position (mm)

Modify optical lens to realize sub-micron laser waist size.

