

1

X線非弾性散乱研究における将来展望

ーXFELOへの期待ー

原子力機構放射光

石井賢司

Outline

Non-resonant Inelastic X-ray Scattering (NIXS)
 Electronic excitation
 Phonon excitation
 (X-ray Raman Scattering, core-level excitations)

Resonant Inelastic X-ray Scattering (RIXS)
 Electronic excitation

- Introduction
- History and current topics
- XFELO as an x-ray source of IXS
- Scientific cases

Inelastic x-ray scattering

What can we learn by inelastic scattering ?

1. static properties [ground state] identification of ordered state

2. dynamical properties [excited state]

- elementary excitation
 - → underlying interaction of electrons understanding of mechanism
- fluctuation

 $S(\boldsymbol{Q}, \boldsymbol{\omega}) \sim [V(\boldsymbol{Q})]^2 [1 \text{-} e^{\beta \boldsymbol{\omega}}]^{\text{--}1} Im \chi(\boldsymbol{Q}, \boldsymbol{\omega})$

- S(\mathbf{Q},ω) : dynamical correlation function
- V(**Q**) : interaction of probe
 - $\chi(\mathbf{Q},\omega)$: response function (susceptibility)
 - → response to external field function of materials

elastic scattering (diffraction)

<u>charge</u> band gap, width Coulomb repulsion <u>spin</u> exchange (J)

inelastic scattering

Inelastic magnetic scattering from magnetic order

magnetic excitation (spin wave)

ferromagnetic order

$$H = -2J \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}$$
$$E = 4JS(1 - \cos qa) \sim (2JSa^{2})q^{2}$$

antiferromagnetic order

$$H = 2J \sum_{i} S_i \cdot S_{i+1}$$

$$E = 4JS|\sin qa| \sim 4JSa|q|$$

C. Kittel, Introduction of Solid State Physics

dispersion relation of magnetic excitation \Rightarrow magnetic interaction J

Non-resonant and resonant x-ray scattering

 $\left(\frac{d^{2}\sigma}{d\Omega dE}\right)_{a,\mathbf{k}\lambda\to b,\mathbf{k}'\lambda} = \left(\frac{e^{2}}{mc^{2}}\right)^{2} \left| \left\langle b \left| \sum_{i} e^{i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}_{i}} \right| a \right\rangle (\boldsymbol{\varepsilon}'\cdot\boldsymbol{\varepsilon}) + \frac{\hbar}{m} \sum_{c,ij} \frac{\left\langle b \left| \boldsymbol{\varepsilon}'\cdot\mathbf{p}_{i} e^{i\mathbf{k}'\cdot\mathbf{r}_{i}} \right| c \right\rangle \left\langle c \left| \boldsymbol{\varepsilon}\cdot\mathbf{p}_{j} e^{-i\mathbf{k}\cdot\mathbf{r}_{j}} \right| a \right\rangle \right|^{2} \delta \left(E_{a} + \hbar\omega_{k} - E_{b} - \hbar\omega_{k'}\right)$

resonant

X-ray interaction with electrons

$$H = \sum_{i} \frac{1}{2m} \left(\mathbf{p}_{i} - \frac{e}{c} \mathbf{A}_{i}(\mathbf{r}_{i}) \right)^{2} + \sum_{ij} V(r_{ij})$$
$$H_{0} = \sum_{i} \frac{\mathbf{p}^{2}}{2m} + \sum_{ij} V(r_{ij})$$
$$H' = -\frac{e}{mc} \sum_{i} \mathbf{A}(r_{i}) \cdot \mathbf{p}_{i} + \frac{e^{2}}{2mc^{2}} \sum_{i} \mathbf{A}(\mathbf{r}_{i})^{2}$$

1st order of A² term non-resonant IXS

2nd order of A·p term (Kramers-Heisenberg formula) resonant IXS

Fermi's golden rule

$$w = \frac{2\pi}{\hbar} \left\langle f | H' | i \right\rangle + \sum_{n} \frac{\left\langle f | H' | m \right\rangle \left\langle m | H' | i \right\rangle}{E_i - E_m + \hbar \omega} \right|^2 \delta \left(E_i + \hbar \omega_i - E_f - \hbar \omega_f \right)$$

non-resonant

 $\sim Z^2$

Two types of IXS

Non resonant IXS (NIXS)	Resonant IXS (RIXS)
1st order of A ² term	2nd order of A · p term
photon energy is far from absorption edge	photon energy is tuned near absorption edge
dynamical charge correlation function $N(Q,\omega) \sim Im\chi(Q,\omega)$ \Rightarrow simple interpretation	2nd order optical process (complex) excitation by strong core-hole potential qualitative similarity to N(Q,ω)
all electrons contribute evenly	element selective
<mark>good energy resolution</mark> ΔE ~ sub meV	poor energy resolution ΔE ~ 100 meV
valence electron excitation across E _F is usually very weak → limited to low Z materials phonon excitation (all electron in atom)	resonance enhancement of valence electron excitation
simple polarization dependence	polarization analysis → determination of symmetry

NIXS (Electronic excitations)

JPSJ 31, 1790 (1971).

PRL 84, 3907 (2000).

PRL 99, 026401 (2007).

Imaging of atomic and attosecond resolution

VOLUME 92, NUMBER 23

PHYSICAL REVIEW LETTERS

week ending 11 JUNE 2004

Imaging Density Disturbances in Water with a 41.3-Attosecond Time Resolution

P. Abbamonte,^{1,*} K. D. Finkelstein,² M. D. Collins,¹ and S. M. Gruner^{1,2}

¹Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA ²Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853-2501, USA (Received 15 November 2003; published 11 June 2004)

We show that the momentum flexibility of inelastic x-ray scattering may be exploited to invert its loss function, allowing real time imaging of density disturbances in a medium. We show the disturbance arising from a point source in liquid water, with a resolution of 41.3 attoseconds $(4.13 \times 10^{-17} \text{ s})$ and $1.27 \text{ Å} (1.27 \times 10^{-8} \text{ cm})$. This result is used to determine the structure of the electron cloud around a photoexcited chromophore in solution, as well as the wake generated in water by a 9 MeV gold ion. We draw an analogy with pump-probe techniques and suggest that energy-loss scattering may be applied more generally to the study of attosecond phenomena.

Im χ(**Q**,ω) ↓ KKT Re χ(**Q**,ω) ↓ FT X(**r**,t)

NIXS (phonon excitation)

Murphy et al., PRL 95, 256104 (2005)

RIXS

6 eV excitation in CuGeO₃

year	count rate (cps)	resolution (meV)	beamline	facility
1999	1	1500	X21	NSLS
2002	6	300	9IDB	APS
2006	50	115	30IDB	APS
2007	600	90	30IDB	APS

$I/\Delta E$ increased by 10⁴ !

J. P. Hill's presentation at IMSS symposium'08

New direction of RIXS

Braicovich et al., PRL 104, 077002 (2010)

CO adsorbed Pt nono-particle (in-situ, element-selective experiment)

Current x-ray sources for IXS

SPring-8

APS

beamlines with insertion device at 3rd generation synchrotron facilities

	NIXS (phonon)	NIXS (electronic) RIXS
energy resolution	~ 1 meV	~ 100 meV
incident flux	10 ⁹ photons/s/1meV ^[1]	10 ¹¹ photons/s/100meV ^[2]
count rate	0.1 - 10 Hz	

Most experiments are flux-limited !

"photons/s/meV" is the key parameter for incident beam.

[1] BL35XU at SPring-8 : Baron et al., Nucl. Instrum. Methods Phys. Res. A 467-468, 627 (2001)
[2] BL11XU at SPring-8 : Inami et al., Nucl. Instrum. Methods Phys. Res. A 467-468, 1081 (2001)

XFELO

XFELO characteristics

KEK [http://pfwww.kek.jp/adachis/erl/cn9/pg102.html]

- Electron Beam Energy 7 GeV
- Bunch length 1 ps
- Emittance 0.2 mm-mrad
- Repetition rate
 1 MHz
- Undulator 60 m
- X-ray energy range 5 25 keV
- Band width 10 ⁻⁷ (1 meV for 10 keV x-ray)
- photons/pulse 10

9

⇒ 10¹⁵ photons/s/meV !!

Workshop of APS User Week 2010

- Photon energy coverage from 5 keV to 25 keV (and third harmonics)
- Tunable photon energy (5%)
- Fully coherent transversely and temporally
- High spectral purity with ~1 meV bandwidth
- Length of individual x-ray pulse ~ 0.1-1 ps
- Number of photons ~10⁹ per pulse (~10⁶ 10⁴ for 3rd harmonics)
- Peak brightness comparable to that of SASE XFELs
- Pulse repetition rate ~1 MHz
- Time-averaged brightness is five orders of magnitude higher than that of the LCLS and three orders of magnitude higher than that of the European XFEL.

New era of IXS using XFELO

Improvement of incident flux by 6 orders of magnitude

→NIXS for electronic excitations are really feasible.

- new electronic excitations at low energy (~ 1 meV)

 - magnetic excitations
 (ħω/mc²)² ~ 10⁻⁶ of charge scattering (might be possible)
- truly complementary tool of inelastic neutron scattering
- → Extension of current techniques
 - spatially- and/or temporally-resolved IXS (phonon, RIXS)
 - extreme conditions

Superconducting gap

Both experimental techniques are powerful but surface sensitive.

Bulk sensitive measurement of SC gap by IXS could be available.

Collective orbital wave excitation (orbiton)

By Raman scattering, orbiton was observed at Q = 0 but not at finite Q.

Dynamical structure factor

 $S(\mathbf{q},\omega) = \sum |\langle \psi_f | \mathrm{e}^{\mathrm{i}\mathbf{q}\cdot\mathbf{r}} | \psi_i \rangle|^2 \delta(E_i - E_f + \hbar\omega)$

Non-dipole transition (e.g. d-d excitaion) is possible at high Q of IXS.

Larson et al., PRL **99**, 026401 (2007).

d-wave Fermi surface deformation

H. Yamase (NIMS)

Spontaneous symmetry breaking of Fermi surface

t-J model

Yamase et al., JPSJ 69, 2151 (2000) Hubbard model

Halboth et al. PRL 84, 5162 (2000)

d-wave Fermi surface deformation d-wave Pomeranchuk instability

Spatially-resolved phonon measurement

K.Ohwada (JAEA)

<u>Spatially-resolved phonon measurement</u> (hopefully nm scale)

 \rightarrow Distinction of FE fluctuation between order and disorder regions (+ their boundary) understanding of relaxer behavior

Temporally-resolved electronic excitation

CO/NO catalytic reaction successive exposure of CO and NO to Pd/Al₂O₃ CO \rightarrow CO₂ ,NO \rightarrow N₂

in-situ experiment ← x-ray spectroscopy

<u>Temporally-resolved RIXS</u> can give more detailed information on electronic states.

- identification of active d band
- distinction of adsorbed molecules

<u>Understanding of catalytic reactions</u> <u>based on electronic states</u>

Summary

• Most of IXS experiments are flux-limited. It will be overcome by x-rays from XFELO.

9 photons/s/meV → 10¹⁵ photons/s/meV improvement of incident flux by 6 orders of magnitude

Many new possibilities will open up!

 Proposed band width (~ 1 meV) is suitable for condensed matter physics complementary use to real time approach

