PF研究会「ERLサイエンスワークショップ II 」 2011年4月27-28日

ERL計画の概要 河田 洋 ERL Project Office, KEK Photon Factory, IMSS, KEK

cERL

3GeVクラスERL + XFEL-O

#) Linac based light source:
1) Emittance ∝ 1/γ ~ 115 mrad ~, 輝度の向上、空間コヒーレンス
2) Short photon pulses~ 0.1~1 pico-second 短パルス化
#) A great numbers of ID-beamlines
#) Possibility to realize the XFEL-O 時間コヒーレンス

ERL, SASE-FEL そしてXFEL-Oの光の性質は?

100----

Return Loop word wideling Weight Line Weight Line Beard output ERL SASE-FEL Coherent fraction (longitudinal) bunch (ps) # of BLs Remark ERL -1023 -1026 1.3G -20% non 0.1~1 -30 Non-perturbed measurement XFEL- O -1027 -1026 1.3G -20% non 0.1~1 -30 Single mode FEL (few mes) SASE- FEL -1027 -1033 50~10K 100% 100% 100% 1 -1 Single mode FEL (few mes) 3rd-SR -1020-21 -1022 -500M 0.1% non 10~100 -30 Non-perturbed measurement	Synchrotron Radiat	tion	~					100 III	<u> </u>	
Been dum Been dum Contention Contention <thcontention< th=""> <thcontention< th=""></thcontention<></thcontention<>	/	Return Loop	- Contraction of the second se	electron beam		beam Al	O3 (30)	undulator	Al ₂ O ₃ e (0 0 0 30)	
Accounting Man Line Ref Prive ERL SASE-FEL Coherent fraction (longitudinal) bunch fraction (longitudinal) #408 ⁻¹⁰⁹⁷ Longitudinal) #408 ⁻¹⁰⁹⁷ Longitudinal) Remark average brilliance peak brilliance repetition rate (Hz) Coherent fraction (vertical) Coherent fraction (longitudinal) bunch (ps) # of BLs Remark ERL ~10 ²³ ~10 ²⁶ 1.3G ~20% non 0.1~1 ~30 Non-perturbed measurement XFEL-O ~10 ²⁷ ~10 ³³ ~1M 100% 100% 1 ~1 Single mode FEL (few meV) SASE-FEL ~10 ²²⁻²⁴ ~10 ³³ 50~10K 100% few % 0.05 ~1 One-shot measurement 3rd-SR ~10 ²⁰⁻²¹ ~10 ²² ~500M 0.1% non 10~100 ~30 Non-perturbed measurement	\$	Electron Gun / Injector Linac		log(radiation power)		dump			143 keV x-rays	
Accelerating BeamRF PhaseERLSASE-FELKJ. Kim, Y. Shvyd'ko, S. Reiche, PRL. 100, 244802 (2008).average brilliancepeak brilliancerepetition rate (Hz)coherent fraction (vertical)bunch fraction (longitudinal)# of BLsRemarkERL~1023~10261.3G~20%non0.1~1~30Non-perturbed measurementXFEL- O~1027~1033~1M100%100%1~1Single mode FEL (few meV)SASE- FEL~1022-24~103350~10K100%few %0.05~1One-shot measurement3rd-SR~1020-21~1022~500M0.1%non10~100~30Non-perturbed measurement	Merc	Superconducting Main L	Beam dump	distance).96 ^{T=0.997}	$T=0.997 R_1=0.92 T_1=0.032$		
average brilliancepeak brilliancerepetition rate (Hz)coherent fraction (vertical)bunch fraction 	Accelerating Beam Accelerating Beam Deccelerating Beam RF Phase Deccelerating Beam RF Phase RF Phase Deccelerating Beam RF Phase RF Phase Deccelerating Beam RF Phase Deccelerating Beam RF Phase RF Phase Deccelerating Beam RF Phase Deccelerating Beam									
ERL $\sim 10^{23}$ $\sim 10^{26}$ 1.3G $\sim 20\%$ non $0.1\sim 1$ ~ 30 Non-perturbed measurement XFEL- O $\sim 10^{27}$ $\sim 10^{33}$ $\sim 1M$ 100% 100% 11 ~ 30 Single mode FEL (few meV) SASE- FEL $\sim 10^{22-24}$ $\sim 10^{33}$ $50\sim 10K$ 100% few % 0.05 ~ 1 One-shot measurement $3^{rd}-SR$ $\sim 10^{20-21}$ $\sim 10^{22}$ $\sim 500M$ 0.1% non $10\sim 100$ ~ 30 Non-perturbed measurement		average brilliance	peak brilliance	repetition rate (Hz)	coherent fraction (vertical)	coherent fraction (longitudinal)	bunch Width (ps)	# of BLs	Remark	
XFEL- O ~10 ²⁷ ~10 ³³ ~1M 100% 100% 1 ~1 Single mode FEL (few meV) SASE- FEL ~10 ^{22~24} ~10 ³³ 50~10K 100% few % 0.05 ~1 One-shot measurement 3 rd -SR ~10 ^{20~21} ~10 ²² ~500M 0.1% non 10~100 ~30 Non-perturbed measurement	ERL	~10 ²³	~10 ²⁶	1.3G	~20%	non	0.1~1	~30	Non-perturbed measurement	
SASE- FEL ~10 ^{22~24} ~10 ³³ 50~10K 100% few % 0.05 ~1 One-shot measurement 3 rd -SR ~10 ^{20~21} ~10 ²² ~500M 0.1% non 10~100 ~30 Non-perturbed measurement	XFEL- O	~10 ²⁷	~10 ³³	~1M	100%	100%	1	~1	Single mode FEL (few meV)	
3 rd -SR ~10 ^{20~21} ~10 ²² ~500M 0.1% non 10~100 ~30 Non-perturbed measurement	SASE- FEL	~10 ^{22~24}	~10 ³³	50~10K	100%	few %	0.05	~1	One-shot measurement	
	3 rd -SR	~10 ^{20~21}	~10 ²²	~500M	0.1%	non	10~100	~30	Non-perturbed measurement	

(brilliance : photons/mm²/mrad²/0.1%/s @ 10 keV)

- Store an X-ray pulse in a Bragg cavity→ multi-pass gain & spectral cleaning
- Provide meV bandwidth
- MHz pulse repetition rate \rightarrow high average brightness (10¹⁵ Photons/sec, 10⁹ photons/pulse @ ~10keV with a few meV b.w.)
- Zig-zag path cavity for wavelength tuning
- Single mode X-ray laser (time and space domains)

Originally proposed in 1984 by Collela and Luccio and resurrected in 2008 (KJK, S. Reiche, Y. Shvyd'ko, PRL 100, 244802 (2008)

Spectral Brightness

R. Hettel, "Performance Metrics of Future Light 13 Sources", FLS2010, SLAC, March 1, 2010.

ERL計画の位置付け1 ビームエミッタンスの経緯

rand challenges for basic sciences

 \sim on-crystalline materials and nano-science \sim

rand challenges for basic sciences

 \sim on-equilibrium states generated by photons \sim

12

ERLの加速器要素技術のR&D項目

experimental possibilities based on CSR of THz radiation and laser inversed Compton X-ray

source.

Continuous upgrading:

さらに前倒しに向けて努力中!

300KWクライストロン用高圧電源の立ち上げ・調整完了
2系統の入力カプラー用テストスタンドを構築・テスト開始

cERL, ERL: target timelines

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
R&D of ERL key elements												
	Prep of ERL Test Facility CERL construction				Beam test and test experiments							
					Improvements towards 3GeV class ERL							
					Construction of 3GeV class ERL				on of s ERL		User run	

軟・硬X線ERL建設に向けて

・ KEK内ロードマップ、放射光学会特別委員会

OLCとの協力のもと超伝導先端加速器の建設の可能性 O現実的な検討が必要: エネルギーの吟味: 5GeVクラスから3GeVクラス

- メリット: 分光法による電子状態分析の強化 予算の縮小
- ディメリット: 10pmrad \rightarrow 15pmrad

ERLプロジェクトの開発がもたらす更なる展開

高繰り返し高輝度超伝導加速器技術で開かれる世界
 O XFEL-O (既に折込積み)
 O 高繰り返しSeeded XFEL

High-Repetition-Rate FEL Facility at LBNL (Synchrotron Radiation News, Vol. 20, NO. 6, 2007, p20~27.)

ERLサイエンスの検討

4月27日28日「ERLサイエンスワークショップⅡ」

http://pfwww.kek.jp/pf-seminar/ERL/science_workshop/index.html

• 7月11日「ERLシンポジウム

-持続可能な社会を実現する放射光--」

まとめ

 放射光源の性能向上のNEEDは、既にナノビーム、コ ヒーレントX線領域そして100fsecのダイナミクス研究に 達している。

→ 10²³の輝度と~10pmradのエミッタンス、100フェムト 秒のパルス幅が目標となる計画。

 PFの後継機として改造ではなく、グリーンフィールドの 計画であるのでさらに建設運転後に発展の余地を十 分に有するもの。

> KEKで先端的超伝導加速器を用いた ERLとXFEL-O計画を実現