# 次世代フェムト秒放射光を利用した時間分解測定技術

## 田中 義人

(独)理化学研究所•播磨研究所

放射光科学総合研究センター・基盤研究部

物質系放射光利用システム開発ユニット

1. はじめに

1-1. 次世代フェムト秒放射光源

- 1-2.フェムト秒光源が拓く物質科学
- ERL光、XFEL-Oを用いた時間分解測定技術とその開発要素
  2-1. ERLを用いた高速時間分解測定法
  2-2. ポンプ・プローブ法のための時間同期技術
  2-3. 繰り返し測定法
- 3. まとめと展望

1. はじめに

# 1-1. 次世代フェムト秒放射光源

# 1-2.フェムト秒光源が拓く物質科学

# 1-1. 次世代フェムト秒放射光源

# 次世代光源と現有光源 ERL, XFEL-O, SASE, Storage ring

|                         | Average<br>brilliance        | Peak<br>brilliance        | Repetition<br>rate (Hz) | Coherent<br>fraction | Bunch<br>width<br>(ps) | # of<br>BLs | Remark                       |
|-------------------------|------------------------------|---------------------------|-------------------------|----------------------|------------------------|-------------|------------------------------|
| ERL                     | <b>~</b> 10 <sup>23</sup>    | <b>~</b> 10 <sup>26</sup> | 1.3 G                   | <b>~</b> 20 %₀       | 0.1-1                  | 30          | Non-perturbed<br>measurement |
| XFEL<br>-O              | <b>~</b> 10 <sup>27</sup>    | <b>~</b> 10 <sup>33</sup> | <b>~</b> 1 M            | <b>~</b> 100 %       | 1                      | few         | Single mode<br>FEL           |
| SASE-<br>FEL            | $\sim 10^{22-24}$            | <b>~</b> 10 <sup>33</sup> | 100-10 K                | <b>~</b> 100 %       | 0.1                    | <b>~</b> 1  | One-shot<br>measurement      |
| 3 <sup>rd</sup> -<br>SR | <b>~</b> 10 <sup>20−21</sup> | <b>~</b> 10 <sup>22</sup> | ∼500 M                  | <b>~</b> 0.1 %       | 10-100                 | 30          | Non-perturbed<br>measurement |
|                         |                              |                           |                         |                      | $\bigcirc$             |             |                              |

KEK河田先生ERL研究会資料より抜粋



# 1. Storage ring SR sources



SPring-8, ESRF, APS, PF, PF-AR..... Pulse width: 40 ps in FWHM Rep. rate: 200 kHz-509MHz (SPring-8)





1-230 fs 120 Hz (LCLS) <100 fs 10-60 Hz

LCLS, EuroFEL, SPring-8 (XFEL/SPring-8)

3. ERL



~100 fs to 1 ps (KEK) ~20 fs to 2 ps (Cornell) 1.3 GHz





# 1-2.フェムト秒次世代X線光源が拓く物質科学 機能と構造変化の関係をしらべる



Cf.) 理研・基盤研究部・物質系放射光利用システム開発ユニットHP

### 光照射時の物質の構造変化を見る(SPring-8での例) --超短パルス光照射時の相変化・結晶格子ダイナミクス---



# 2. ERL光を用いた時間分解計測技術と その開発要素

# 2-1. ERLを用いた高速時間分解測定法

# 2-2. ポンプ・プローブ法のための時間同期技術

2-3. 繰り返し測定法

#### <sup>1090709-11「ERLサイエンスワークショップ」@KEK</sup> **2-1. ERLを用いた高速時間分解測定法**

#### **ERL time structure**

#### **Time resolution & Method**



#### <sup>090709-11「ERLサイエンスワークショップ」@KEK</sup> 2-2.ポンプ・プローブ法のための時間同期技術



# 時間同期の重要項目

# (A) 高精度同期制御

・要求精度 << パルス幅



# (B) 位相(時間遅延)制御



# (A) 高精度同期制御(蓄積リングの場合)

Synchronization scheme **RF** master oscillator • Mode-locked Ti:sapphire laser with external trigger from a RF master oscillator of the ring (RF bucket) Cavity length =  $\frac{1}{2} \cdot \frac{c}{(f_0/6)}$ ,  $f_0$ : Frequency of RF master oscillator **(a**) **(b)** • Output timing of amplified laser pulses is controlled with a counter SR (Electron bunch) and a delay pulse generator Laser (Repetition rate =  $\frac{1}{2436 \times 209} f_0 \sim 1 \text{ kHz}$ ) **(C) RF Master Oscillator Timing Controller** 508.58 MHz 1 kHz 84.76 **RF** Cavity Electron MHz Bunches Undulator Storage Ring PD Monochromator Laser Oscillator 130 fs Streak Camera Laser Amplifier Laser

## (a) RF基準信号発生器(508.58 MHz)と Laserの同期特性





#### 090709-11「ERLサイエンスワークショップ」@KEK (b)X線ストリークカメラによるX線SRパルスの 時間特性評価(蓄積リングの場合)



T. Hara, Y. Tanaka, H. Kitamura, T. Ishikawa Rev. Sci. Instrum., **71**, 3624-3626 (2000)

#### 090709-11「ERLサイエンスワークショップ」@KEK レーザー・放射光同期評価(蓄積リングの場合)



#### 1090709-11「ERLサイエンスワークショップ」@KEK Post – processing (XFEL向き)

### ショット毎のタイミング記録法



ではERLの場合は・・・

# なにがなんでもサブピコ同期をとろう!

レーザーオシレーターで < 200 fs

・高周波信号の低ジッター性能の利用
 ・遅いドリフトはフィードバックにより補償

#### 090709-11「ERLサイエンスワークショップ」@KEK (B) RF位相(時間遅延)制御

### **1. Optical Delay**

- High precision delay
- Pump & probe pulses are supplied by single light source
- Large delay may cause the misalignment at a sample

#### 2. RF trigger delay (Cable delay)

- Delay cable like a trombone
- RF noise at a contact

# **3. RF** trigger delay (Continuous phase shifter)

Compact Quick feedback

E(t)=sin wt

A<sub>1</sub> cos ωt +A<sub>2</sub>sin ωt = sin(ωt-α) = sin(ω(t-τ)) = E(t-τ) A<sub>1</sub>=-sin α, A<sub>2</sub>=cos α phase Time delay

#### 090709-11「ERLサイエンスワークショップ」@KEK 高精度パルス遅延器(精度5psで無限遅延可能)



090709-11「ERLサイエンスワークショップ」@KEK RF信号遅延器の精度評価と動作の実際





#### 遅延器の動作の様子

11.044

3177/11



#### 090709-11「ERLサイエンスワークショップ」@KEK サブピコ秒RF信号遅延器



# 2.3 繰り返し測定法

## 高繰り返し → データ精度向上(精密測定の世界へ)

#### (A) 放射光光源、パルスレーザーの繰り返し能力

|            | Average<br>brilliance     | Peak<br>brilliance        | Repetition<br>rate (Hz) |       |  |
|------------|---------------------------|---------------------------|-------------------------|-------|--|
| ERL        | ~ $10^{23}$               | <b>~</b> 10 <sup>26</sup> |                         | 1.3 G |  |
| XFEL<br>-O | <b>~</b> 10 <sup>27</sup> | <b>~</b> 10 <sup>33</sup> |                         | 1 M   |  |

(B) 対象の物質の回復時間に依存
 1/frep > τ

Dreer Darameter Dreer Darameter Time, t

# (A)X線マイクロビームを用いた高繰り返し測定 一高繰り返し光源性能を最大限に活用する一



オシレーターで励起

MHz- GHzの繰り返しが可能



#### <sup>090709-11「ERLサイエンスワークショップ」@KEK</sup> (B)対象の物質の回復時間に依存







(ii) By electronic gate

 Avalanche photodiode Gate > 5 ns
 Gated CCD camera

**Gate** > 20 ns

1.3 GHz の場合は、700 psのゲートが必要 (もったいないが、やや間引く?)





# 捨てる。。。。。。。。。。 高繰り返し測定(マイクロビーム+時分割測定)

#### CREST「反応現象のX線ピンポイント構造計測](H16-H21)



Tanaka et al., Jpn. J. Appl. Phys., 48, 03A001 (2009).

# DVD材料におけるアモルファスー結晶相変化の測定例



Y. Fukuyama et al., Appl. Phys. Express, 1, p.045001 (2008).





# 高繰り返し測定(マイクロビーム+時分割測定)



3. まとめと展望

- ・ERLを用いたフェムト秒から<u>広い時間領域</u>の ダイナミクス研究に期待。
- フェムト秒光源を用いた時間分解要素技術開発項目
  (1)レーザー・放射光の高精度同期
  (2)遅延時間の高精度制御
  (3)高繰り返し測定法
- ・高繰り返しSRは、レーザー「励起状態」の精密構造測定に有利
- ・「XFEL-O励起」ーフェムト秒レーザープローブ実験にも期待 (X線励起状態の光物性研究)

なにがなんでも同期をとろう!