ERLサイエンスワークショップ

岩佐義宏

高エネルギー加速器研究機構 July 8-10, 2009

非平衡固液界面の電子物性

液体(イオン伝導体)

固体(電子伝導体)

Acknowledgement

Organics, and Nitrides:

<u>H. Shimotani, H. T. Yuan, J. T. Ye,</u> (IMR, Tohoku U)

Oxides:

<u>M. Kawasaki, K. Ueno,</u> A.Ohtomo, A. Tsukazaki (WPI-AMR, Tohoku U)

LT Physics:

<u>T. Nojima, S. Nakamura,</u> H. Aoki, N. Kimura (IMR, Tohoku U)

IMR ₿

OUTLINE

 はじめに: 電界効果トランジスタ(FET) と電界誘起超伝導
 電気2重層トランジスタ(EDLT)
 様々な物質への応用 有機半導体 酸化物半導体 ZnO、SrTiO₃ イオン液体

Physical control of carrier density : Electric field effect

Capacitor Charge accumulation device

Resistance measurement of capacitor electrodes (1906)

Electric Field Control of superconductor

R. E. Glover, III & M. D. Sherrill (1960)

Field Effect Transistor (FET) Current switching device

Patent of MOS-FET (1930s)

Invention of Si-MOSFET D. Kahng & M. M. Atalla (1960)

History 1

Electric Field Control of Tc in superconductor

R. E. Glover, III and M. D. Sherrill, Phys. Rev. Lett. 5, 248 (1960).

History 2 **Discovery of high Tc cuprates and its field effect** Chemical doping to insulators yields high Tc (1986) Field-effect in high Tc with chemical aids (1991) C. H. Ahn, J.-M. Triscone, and J. Mannhart $YBa_2Cu_3O_{7-\delta}$ Nature 423, 1015 (2003). 1.0r b 0.8 6 o(T)/p(100K) o (mΩ cm) 0.6 0.4 10 µC cm⁻² 0.2 С 50 200 150 100 20 40 60 80 100 n T (K) T (K) Electric Double Layer Tansision

Charge Accumulation Devices

Comparison of charge accumulation devices

Electric Double Layer Capacitor

Lithium Ion Secondary Battery

Electrolyte (Polymer battery: gel polymer electrolyte)

©2006 HowStuffWork:

Electric Double Layer (EDL)

Electric Double Layer Capacitor (EDLC)

Electric Double Layer (EDL)

Electric Double Layer Capacitor (EDLC)

Application of EDLTs to high density charge accumulation in organic semiconductors

Device fabrication

ZnO single crystalline thin film

Low carrier density and high mobility

$$\begin{pmatrix} \mu = 100 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1} \\ n = 7.7 \times 10^{15} \text{ cm}^{-3} \end{pmatrix}$$

Tsukazaki et al., APL 88, 152106 (2006)

Device fabrication

ZnO single crystalline thin film ZnO (700 nm) Mg_{0.1}Zn_{0.9}O(150 nm) ScAIMgO₄substrate

Low carrier density and high mobility

$$\begin{pmatrix} \mu = 100 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1} \\ n = 7.7 \times 10^{15} \text{ cm}^{-3} \end{pmatrix}$$

Tsukazaki et al., APL 88, 152106 (2006)

Ti/Au electrode

VG

VDS

Device fabrication

ZnO single crystalline thin film

Low carrier density and high mobility $\begin{pmatrix}
\mu = 100 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1} \\
n = 7.7 \times 10^{15} \text{ cm}^{-3}
\end{bmatrix}$ Tsukazaki et al., APL 88, 152106 (2006)

EDL-FET

Direct measurement of carrier density (Hall effect)

H. Shimotani et al. *APL* 91, 082106 (2007) Electric Double Layer Transistor

IMR

Temperature dependence of resistance in SrTiO₃ EDLT

IMR

Electric field-induced superconductivity in SrTiO₃

Two kinds of ionic conductors

Carrier density from Hall effect using Ionic Liquid

IMR

Summary

非平衡固液界面 + 電界誘起超伝導

 Challenge: Increase Tc Discover new superconductors
 Multidisciplinary materials science in non- equilibrium states at solid-liquid interfaces

Electronic conductor

