

ERLサイエンスワークショップ 2009年7月9~11日,高エネルギー加速器研究機構

スピントロニクス材料の現状と課題 -スピン流の創出と制御一

東北大学・金属材料研究所 高 梨 弘 毅

発 表 構 成

 イントロダクション スピントロニクスとは何か ナノ磁性との関係 スピン流との関係

- 2. 歴史的経緯
- 3.現状ー課題ー展望
 スピン偏極
 スピン注入
 スピン緩和
 スピン流と電流
- 4. 放射光への期待/まとめ

スピントロニクスとは?

なぜナノスケールか — スピン **→→** スピン流 J_s = J_↑- J_↓ S スピン拡散長: l_{sf} = $1 \sim 10$ nm (強磁性金属) **100~1000 nm**(非磁性金属) *e*⁻ 電 荷 ━━→ 電 流 $J_e = J_\uparrow + J_\downarrow$ 平均自由行程: $l_{\rm F} = 1 \sim 10$ nm (金属薄膜)

スピントロニクス分野

く原 理> スピン依存伝導 スピン緩和・拡散 スピントランスファー スピン軌道相互作用 表面・界面磁性 交換結合・磁気異方性 キャリア誘起強磁性	< <p><現 象> 巨大磁気抵抗効果(GMR) トンネル磁気抵抗効果(TMR) スピン注入・蓄積 磁化反転・ダイナミクス 磁壁移動 スピンホール効果 光誘起磁化</p>	

<u>材料</u>

<物 質>	<微小構造>
高スピン偏極物質	人工格子(ヘテロ構造)
高磁気異方性物質	スピンバルブ
強磁性半導体	細線・ドット
分子・ナノカーボン系	ナノ粒子

<u> デバイス</u> GMR / TMRヘッド 磁気センサー 磁気メモリ(MRAM) スピントランジスタ 高周波素子 円偏光素子 スピン熱素子

ハードディスクドライブ

媒体(メディア): このディスクの中に磁化(N極S極)の 配列として情報がぎっしり詰まっている。

100 Gb(ギガビット)/inch² 以上

→ 1 bit 当たり100 nm 四方以下

ヘッド: GMR or TMRを利用して情報を 読み出す.

ハードディスク面記録密度の変遷

2007年 ノーベル物理学賞

Albert Fert (France) Peter Grünberg (Germany)

スピントロニクスの発展

Giant Magnetoresistance (GMR) 磁化が平行状態と反平行状態とで 電気抵抗が大きく変化する. (スピン依存伝導) スピンバルブGMRヘッドの原理

Nobel week, December 2007

ノーベル賞講演にて **12**月8日

授賞式にて 12月10日

スウェーデンロイヤルアカデミーによるレセプションにて 12月7日

基本的なデバイス構造(1)

<u>CPP (Current-Perpendicular-to-Plane: 膜面垂直通電) 型</u>

中間層 = 絶縁体:トンネル磁気抵抗効果(TMR) 金 属:巨大磁気抵抗効果(CPP-GMR)

磁気抵抗効果 (MR): $\frac{\Delta R}{R} \propto P_{A} \cdot P_{B}$ $P_{A(B)}: スピン偏極率$

基本的なデバイス構造 (2)

<u>Lateral structure(面内構造)型</u>

重要な基本概念

スピン偏極 (Spin polarization) スピン注入 (Spin injection) スピン緩和 (Spin relaxation) いかにして効率良くスピン流を生成し. 長距離までスピン流を流すか.

飽和磁化: $M_{_s}$ \propto	$N_{\uparrow}-N_{\downarrow}$
伝導電子の <mark>スピン偏</mark> 格	函率
D_{\uparrow}	$E_F) - D_{\downarrow}(E_F)$
$I = \frac{1}{D_{\uparrow}(I)}$	$\overline{E_F} + D_{\downarrow}(\overline{E_F})$
強磁性 3d 遷移金属 のスピン偏極率	Fe: +0.40 Co: +0.35 Ni : +0.23

ハーフメタル; P=1

ホイスラー合金 NiMnSb, Co₂MnSi, Co₂MnAl, etc.

遷移金属酸化物 CrO₂, Fe₃O₄, LSMO, etc.

ハーフメタル:ホイスラー合金

full-Heusler

 X_2YZ

(Co₂MnSi, Co₂MnGe etc.)

L2₁ structure

Co₂MnSi (CMS)

- Half-metallic energy gap : 400 600 meV
- High *T*_c (~ 985K)
- Highly ordered *L*2₁-structure is easily obtained.

ホイスラー TMR の発展

低抵抗化とTMR

Co₂MnSi/Ag/Co₂MnSi fully-epitaxial CPP-GMR device

Fully-epitaxial growth in CMS/Ag/CMS

Iwase et al., Appl. Phys. Express, 2, 063003 (2009).

MRAMの主要課題

- 1. 書き込み電流の低減 → スピン注入磁化反転
- 2. 特性バラツキ対策: MTJ素子の均一性
 - 抵抗およびTMRの均一性
 - 書き込み電流の均一性
- 3. ギガビット級の大容量化
 - 低電流書き込み
 - 熱揺らぎの抑制
 - CMOSフリー

スピン流による磁化制御(スピン注入磁化反転)

$$P \longrightarrow AP$$

$$J_{c}^{P \to AP} = -\alpha e \gamma M_{S} d [H_{ext} + (H_{ani} + 2\pi M_{S})] / \mu_{B} g(0)$$

$$g(\theta) = [-4 + (P^{-1/2} + P^{1/2})^{3} (3 + \hat{s}_{1} \cdot \hat{s}_{2}) / 4]^{-1}$$

 α : Damping parameter H_{ex} : External magnetic field γ : Gyromagnetic ratio H_{ani} : Anisotropy field M_s : Saturation magnetization P: Spin polarization factord: Layer thickness

垂直磁化 TMR / CPP-GMR

高集積化

重直磁化の有利性

高磁気異方性→磁化の安定性 負の形状磁気異方性→スピン注入磁化反転が容易 アスペクト比無制限

Fully epitaxial

スピン流と磁化ダイナミックス

Current-induced domain wall motion

Current-induced vortex core motion

(A. Yamaguchi et al., PRL 92 (2004) 077205.)

MFM observation of domain wall movement by spin polarized current in a permalloy nanowire without external magnetic field

Spin-transfer effect

(S. Kasai et al., PRL 101 (2008) 237203.)

Time-resolved M-TXM observation of vortex core motion driven by ac current in a permalloy disk

スピン流と電流

垂直磁化FePt/Au系における巨大スピンホール効果

Spin Hall angle ~ 0.1

Electrical detection of giant spin Hall effect at room temperature

T. Seki et al., Nature Materials, 7 (2008) 125.

科研費特定領域研究「スピン流の創出と制御」 (2007~2010年度)

放射光への期待(1)

放射光への期待(2)

 スピン流回路の
 スピン流に関わるダイナミックスの解明

 要素技術の確立
 感度 / 時間分解能 < ns / 位置分解能 ~ nm</td>

