2009.7 ERLサイエンスワークショップ

X線光学系 / 光学素子開発の 現状と展望

JASRI / SPring-8 竹内晃久

SPring-8のイメージングビームライン

コンテンツ

- 光学系の開発(位相イメージング)
 - コヒーレント結像光学: 2光束干渉計
 - 部分コヒーレント結像光学
 - ゼルニケ型
 - タルボ干渉計
 - CTへの応用
 - 走査型微分位相顕微鏡とCTへの利用
- 光学素子開発
 - フレネルゾーンプレート(FZP)
 - 全反射ミラー
 - 積層型FZP / キノホルム
- 分解能の限界について(X線CT)
- コヒーレントナノイメージングにおける課題点

ホログラフィ、位相イメージング

- 結像光学系
 - コヒーレント結像 @BL20XU
 - 高い干渉性、強度犠牲
 - 2光束干渉顕微鏡(プリズム、ミラー、etc...)
 - 部分コヒーレント結像&CT @BL47XU, BL20XU
 - 位相イメージングと大強度X線による高速イメージングを両立
 - タルボ干渉計
 - ゼルニケ型
 - 屈折コントラスト(defocus)
- 走查型光学系
 - 暗視野微分位相顕微鏡&CT @BL20XU
- 拡大Gabor型in-lineホログラフィ
 高いコヒーレンス且つスペックルフリー @BL20XU

• 光学系の開発(位相イメージング)

• コヒーレント結像光学: 2光束干渉計

- 部分コヒーレント結像光学
 - ゼルニケ型
 - タルボ干渉計
 - CTへの応用
- 走査型微分位相顕微鏡とCTへの利用

• 光学素子開発

- フレネルゾーンプレート(FZP)
- 全反射ミラー
- 積層型FZP / キノホルム
- 分解能の限界について(X線CT)
- コヒーレントナノイメージングにおける課題点

2光束干涉計:特徵

- 位相差の直接測定 → 高い位相感度
- 位相回復による定量測定が可能
 - 縞走査(フリンジスキャン)法、フーリエ変換法
- 高いコヒーレンス(視野程度, ~100 µm)が必要
 第三世代光源では多くの強度を犠牲 coherent fraction ~ 10⁻³
 プリズム型、ロイドミラー型は1次元のコヒーレンスだけでよい
 → SPring-8のカップリングにマッチした光学系
- CTによる3次元測定
 - 実用上の問題点:

長い測定時間(~数時間)、ドリフト 試料への空間的制限

ホログラム

定量性評価

試料:ラテックス(ポリスチレン)球 8 μmφ BL20XU, 12.4 keV

空間分解能、位相感度

試料: line-and-spaceパターン (Ta, 0.5 µmt), BL20XU, 12.4 keV

• 光学系の開発(位相イメージング)

- コヒーレント結像光学: 2光束干渉計
- 部分コヒーレント結像光学
 - ゼルニケ型
 - タルボ干渉計
 - CTへの応用
- 走査型微分位相顕微鏡とCTへの利用

• 光学素子開発

- フレネルゾーンプレート(FZP)
- 全反射ミラー
- 積層型FZP / キノホルム
- 分解能の限界について(X線CT)
- コヒーレントナノイメージングにおける課題点

ケーラー照明によるX線結像顕微鏡 @BL47XU

- ●ケーラー照明用コンデンサを利用した部分コヒーレント結像
- ●エネルギー領域:6-12 keV(20 keVでの実験実績もあり)
- ●位相、屈折イメージングも可

Zernike, Talbot, defocus

●高分解能CTの基本光学系

主なパラメータ@8keV FZP: NTT-ATN, *Δr_n*=100 nm 倍率:70倍 ピクセルサイズ:~45 nm 露光時間: 300msec

SPring 8

テストパターンによる空間分解能評価

光学系のMTF (Modulation Transfer Function)

タルボ干渉計+結像光学系

●CTによる3次元測定

<u>タルボ干渉計</u>

Gratings, (NTT-Advanced Technology Co., Japan) E-Beam Lithography Technique Materinal: Ta, Pitch: 5 μm, Thickness: 0.96 μm (G1) and 5 μm (G2)

Optical micrograph of grating

G1: phase grating (rotated to adjust the pitch) G2: absorption grating (inclined to increase effective optical path length)

10um

・吸収格子ー周期分の距離を5等分に分けてスキャン

10um

・吸収格子ー周期分の距離を5等分に分けてスキャン

10um

・吸収格子ー周期分の距離を5等分に分けてスキャン

10um

・吸収格子ー周期分の距離を5等分に分けてスキャン

10um

・吸収格子ー周期分の距離を5等分に分けてスキャン

10um

・吸収格子ー周期分の距離を5等分に分けてスキャン

10um

・吸収格子ー周期分の距離を5等分に分けてスキャン

<u>タルボ干渉計:吸収像と位相像の比較</u> 試料:P43(Gd₂O₂S)+ガラスファイバー+のり,BL47XU,8keV

吸収コントラスト

Calc. Linear absorption coefficient @ 8keV P43(Gd2O2S): 2500cm⁻¹ Fiber(SiO2): 80.0cm⁻¹ Glue(C8H4O3+C2H4(OH)2): 9.9cm⁻¹

(微分)位相コントラスト

Calc. Refractive index @ 8keV P43(Gd2O2S): 1.71x10⁻⁵ Fiber(SiO2): 7.2x10⁻⁶ Glue(C8H4O3+C2H4(OH)2): 4.9x10⁻⁶

軽元素に対して高い感度。重元素に対しての相対的な感度が上がる → δ/β比が、軽元素で比較的大きいことに起因

タルボ干渉計:吸収像と位相像の比較2 試料:テストチャート(Ta 0.5 μmt) BL47XU,

BL47XU, 8 keV Exposure: 0.15 sec Pixel size: 47 nm 5 step fringe scan

吸収コントラスト

微分位相コントラスト 微分位相像の感度(3σ) ~ λ/150 /pixel 位相感度(3σ): Δφ ~ λ/4.65 *厚み感度:Δt* ~ 0.83 μm

*厚み感度(*3σ)*:Δt* ~ 0.1 μm

重元素においては、吸収の方が感度が高い場合があるので注意が必要

ゼルニケ型位相差顕微鏡

- 光学的なフーリエフィルタリングによる位相検出
- 定量測定不可(弱位相物体にのみ近似的な測定が可)
- 高いコヒーレンス必要ない

→ 大強度による短時間露光が可能(@SPring-8)

• CTには向かないが、利用実験はされている。

主なパラメータ@8keV 倍率:70倍 ピクセルサイズ:~45 nm 露光時間: 300msec

Phase plate: NTT-ATN Ta 0.96 μ mt (λ /4 for 8 keV 4 μ m width ring pattern

Contrast transfer function (CTF)

低周波数領域では、コントラストが低い(吸収と同じ)。 →暗視野のような像

高周波数領域では、通常のMTFと同じような曲線。

→空間分解能は変化なし。

理想的には最大で吸収より10倍以上の感度。実際には数倍

Contrast transfer function (CTF) 2

理想では吸収より800倍程度感度が高い 実質の利得は70倍程度

<u>吸収像と位相像の比較2:軽元素試料</u> 試料:ポリスチレン球(8μmφ)+ガラスキャピラリ BL47X

BL47XU, 8 keV Exposure: 0.15 sec Pixel size: 47 nm

Transmission

Bright phase-contrast 位相感度(3 σ): $\Delta \phi \sim \lambda / 64$ ホ[°]リスチレン厚さ感度(3 σ): $\Delta t \sim 0.66$ µm

Dark phase-contrast 位相感度(3 σ): $\Delta \phi \sim \lambda /70$ ポリスチレン厚さ感度(3 σ): $\Delta t \sim 0.60$ µm

ポリスチレン厚さ感度(3σ): *Δt* ~ 46.2 μm

テストパタンによる3D像分解能評価

Sample:

Resolution test pattern drawn on Al 300 µm¢ wire (FIB etching)

Local tomography X-ray energy: 8 keV Voxel size: 46.5 nm

2009. 7. ERLサイエンスワークショップ

SPring - 8

3D像空間分解能の変遷

サンプル: 珪藻土(Achnanthidium lanceolata)「天然のテストチャート」

• 光学系の開発(位相イメージング)

- コヒーレント結像光学: 2光束干渉計
- 部分コヒーレント結像光学
 - ゼルニケ型
 - タルボ干渉計
 - CTへの応用

• 走査型微分位相顕微鏡とCTへの利用

• 光学素子開発

- フレネルゾーンプレート(FZP)
- 全反射ミラー
- 積層型FZP / キノホルム
- 分解能の限界について(X線CT)
- コヒーレントナノイメージングにおける課題点

走查型微分位相顕微鏡

X線が物体を通ると、屈折する性質を利用。

試料透過後の強度(I)・・・吸収像exp(-2 βkt) = I/I_0 試料透過後のビーム位置変化(Δx)・・・微分位相(屈折率変化) $\nabla_x(\partial t) = L\Delta x$

- 高い位相感度 (3σ <10⁻²λ)
- ●高い定量性

×測定時間長い → 高速化(~400 plots/sec)により2次元(raster, CT)は実用化

走查型微分位相顕微鏡

Differential-Phase-Contrast Imaging in Scanning Microscopy

ポ[°]リスチレン厚さ感度(3σ): *∆t* ~ 59.3 μm

2009. 7. ERLサイエンスワークショップ

ポリスチレン厚さ感度(3σ):

 $\Delta t \sim 0.16 \,\mu m$

応用例:ヒト子宮頚癌 HeLa細胞

<u>試料:グルタルアルデヒドにて固定後乾燥</u>

Absorption

BL20XU, 8keV Scan step: 50 nm × 50 nm 2000 × 1600 pixel Exposure: 1 msec Max. scan speed: 400 Hz Measurement time: ~4 hours

Phase image

• 光学系の開発(位相イメージング)

- コヒーレント結像光学: 2光束干渉計
- 部分コヒーレント結像光学
 - ゼルニケ型
 - タルボ干渉計
 - CTへの応用
- 走査型微分位相顕微鏡とCTへの利用

• 光学素子開発

- フレネルゾーンプレート(FZP)
- 全反射ミラー
- 積層型FZP / キノホルム
- 分解能の限界について(X線CT)
- コヒーレントナノイメージングにおける課題点

X線光学素子

• 光学系の開発(位相イメージング)

- コヒーレント結像光学: 2光束干渉計
- 部分コヒーレント結像光学
 - ゼルニケ型
 - タルボ干渉計
 - CTへの応用
- 走査型微分位相顕微鏡とCTへの利用

• 光学素子開発

- フレネルゾーンプレート(FZP)
- 全反射ミラー
- 積層型FZP / キノホルム
- 分解能の限界について(X線CT)
- コヒーレントナノイメージングにおける課題点

X線CTの空間分解能はどこまでいくの?

焦点深度∆f

2*Δf* = 0.61 *λ* / NA² = *Δ*² / 0.61*λ* NA: 開口数、*Δ*: 空間分解能

焦点深度は分解能の2乗に比例

→ 分解能の向上に伴い視野も急激に狭くなる・・・

例 : 8keV ⊿ = 100 nm, 2⊿f ~ 100 µm, N~ 1000 ⊿ = 30 nm, 2⊿f ~ 10 µm, N~ 300 ⊿ = 10 nm, 2⊿f ~ 1 µm, N~ 100 N: サンプリング数(ピクセル数) ~ 2⊿f/∆ = NA⁻¹

<u>目標とする分解能: (Sub)30 nm</u>

3D-TEMまでの空間-分解能ギャップは埋められる (3D-TEMの視野は数ミクロンが上限)。 それ以上・・・ LocalCT、共焦点顕微鏡技術の併用。

X線光学素子の分解能はどこまでいくの?

Diffraction limit for spatial resolution

 $\Delta = c \lambda / NA$ c~1 (typical 0.61 for circular aperture) NA: numerical aperture $n \sin \theta$

Theoretical Resolution Limit of

Total Reflection Mirror Optics, Wave-Guide, Refractive Lens, Fresnel Zone Plate

NA < $\theta c \sim (2\delta)^{1/2}$ $\lambda/(2\delta)^{1/2} \sim 10$ nm in hard X-ray Region

cf. C. Bergemann, H. Keymeulen and J. F. van der Veen: Phys. Rev. Lett. **91** (2003) 204801. cf. Y. Suzuki, Jpn. J. Appl. Phys. 43 (2004) 7311-7314.

nm分解能達成可能な光学系1

Combined Refractive Lens,

Diffraction Limited Resolution ~ 0.61 x $\lambda/(N\theta c)$

N: Number of Combined Lens

Spherical lens might be feasible, because smaller lens has smaller aberration.

cf. C. Schroer and B. Lengeler, Phys. Rev. Let. 94 (2005) 054802

nm分解能達成可能な光学系2

Three Dimensional Zone Plate (Volume Zone Plate or Laue Lens)

Next limit: atom size with $\lambda/4$ rule (Rayleigh limit)

~ 1 nm.

ERLコヒーレントナノイメージング実験における課題点

- 1. 振動:光学系、光源、地盤、建物
- 2. 温度安定性: ~0.01℃ environment.
- 3. 放射線損傷、冷却: SPring-8の延長でいけるか?
- 4. ナノオーダーの計測法 ・暗視野ナイフエッジスキャン法の開発
- 5. (試料起因でない)スペックル
 - : "No optics without any speckles."
 - Spatial filter
 - •Beam diffuser
- 6. No optics is best optics?

2009. 7. ERLサイエンスワークショップ

ありがとうございました。

光学素子の放射線耐性

FZP: 100 μ m ϕ , 1 μ mt $\Delta r_N = 0.25 \mu$ m Membrane: Si₃N₄ X-ray energy: 10 keV @BL47XU, Flux density: ~ 5 x 10¹³ phs/s/mm

対策: ・真空中又はHe内に ・メンブレンを歪みの少ないSiCに 今のところ解決。

温度変化とドリフト

走查X線顕微鏡像 BL20XU in 2002

熱膨張率(室温) アルミ: 23×10⁻⁶°C⁻¹ SUS304:17×10⁻⁶°C⁻¹ アルミ100mmの治具に対して、 2.3 µm/°Cの熱膨張

ナノイメージングには 0.01℃の温度管理 システムの小型・安定・一体化 熱源(モータなど)の排除

Experimental Setup of Scanning Microscopy with Fresnel Zone Plate Optics at BL20XU SPring-8

検出器前に置いたアパーチャによって、ナイフエッジからの透過光を 遮り、散乱光だけを取り出す。

