Harmonics-Femtosecond, Coherent XUV and Soft X-ray Light Sources S. Watanabe and T. Sekikawa, Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba-ken, Japan

Harmonics are attractive as femtosecond coherent light sources in the XUV and soft x-ray region. Harmonics are now being used for the study on dynamics of core excitation in solids and high resolution photo electron spectroscopy.

Properties of harmonics are summarized in Table. Harmonics are compared with synchrotron radiation and x-ray lasers in Figure about brilliance, photon number/pulse and peak intensity. From these data the prominent advantage over synchrotron radiation and X-ray lasers is the coherence in the frequency and time domains originated from the property of excitation lasers, which enables the generation of femtosecond or even attosecond pulses. The ultrashort pulses gives naturally high peak power. Therefore, harmonics become mighty if they are used for nonlinear phenomena and dynamics in the XUV and soft x-ray regions.

There are some disadvantages to be improved, such as photon number/pulse, average power and stability. The efforts for the improvement and the development of spectroscopic method for harmonics will be introduced.

Term	Comments	Term	Comments
Energy range	down to 0.5keV	brilliance	See Fig
Band width	<10 meV at 14eV.	Spatial coherence	Full size coherence
	continuum		for optimized phase
			matching
Number of	See Fig	Temporal coherence	near pulse width
photons/pulse			(Fourier transform
			limit)
Peak power	6MW at 25eV	Tunability	 tunable by
	(1.2 µ J/200fs)		excitation laser
			tuning
			 selectable by
			multiplayer mirror
			from continuum
Average power	0.1mW at 25eV	Reliability stability	depends on
			excitation laser
Emittance	can be near $/2$	Pulse width	10fs at 10eV
(source size ×	(diffraction limit)		0.5fs at 95eV
divergence)			
		Pep. Rate	10kHz

TableProperties of Harmonics

