Development of Optical Systems for Hard X-rays at SPringe 8 Yoshio Suzuki JASRI/SPring-8

Akihisa Takeuchi, Kentaro Uesugi, Hidekazu Takano, Yasuko Terada, Yoshiki Kohmura JASRI/SPring-8
Nagao Kamijo, Shigeharu Tamura, Masato Yasumoto,
Kansai Medical Univ., AIST,
Hisataka Takenaka, Ikuo Okada, etc.
NTT Advanced Technology

Development of Hard X-ray Optics at SPring-8

1. Beamline configurations,
2. Fresnel zone plate optics

Micro- \& nano-beam generation and characterization,
Imaging microscopy and tomography applications,
Holography and phase-contrast imaging,
Use of quasi-monochromatic (direct undulator) radiation,
3. Total reflection mirror optics,
4. Sputtered-sliced zone plate optics,
5. Refractive lens optics,
6. Theory of resolution limit.

```
\(\square\)
```

BL08W High Energy Inelastic Scattering

O BL08B2 Hyogo BM Hyogo Prefecture

* BL09XU Nuclear Resonant Scattering
* BL10XU High Pressure Research

nce II

-

BL11XU JAERI Materials Science II

- BL12XU NSRRC ID
\qquad National Synchrotron Aadiation Research Center
+

BL13XU Surface and Interface Structures,

- BL14B1 JAERI Materials Science IBL15XU WEBRAM National Institute for Materials Science
- BL16XU Industrial Consortium ID Industrial Consortium
- BL16B2 Industrial Consortium BM Industrial Consortium
\diamond BL17SU RIKEN Coherent Soft X-ray Spectroscopy.- BL19LXU RIKEN SR Physics

大
RI19R2 Engineering.Science Besearch
H BL20XU Medical and Imaging II

* BL20B2 Medical and Imaging I

BL22XU JAERI Actinide ScIence

- BL23SU JAERI Actinide Science I
- BL24XU Hyogo ID

RIKEN Coherent X-ray Optics BL29XU Hyogo Pretecture

+ BL25SU Soft X-ray Spectroscopy of Solid
BL26B1 RIKEN Structural Genomics I

BL: Beamline
B1, B2: Bending Magnets
XU: X-ray Undulator
SU: Soft X-ray Undulator
W: Wiggler
WEBRAM: Wide Energy range Beamline for Research in Advanced Materials NSRRC: National Synchrotron Radiation Research Center

IR: Infrared Radiation
LEP: Laser-Electron Photon LXU: Long-length Undulator SS: Straight Section

$\bigcirc \diamond \square:$ Planned or Under construction

April 1, 2004

BL20XU (Coherent optics, Microbeam, Holography, Interferometer, etc.) Undulator, Medium Length ($\mathbf{2 4 8} \mathbf{~ m}$) beamline.
BL20B2 (Computer Tomography, Topography, Medical Imaging, etc.) Bending Magnet, Medium Length (215 m).
BL37XU (Fluorescent X-ray Micro-analysis) Undulator, Normal Length ($\mathbf{5 0} \mathbf{m}$) beamline.
BL47XU (Microbeam, Imaging Microscopy \& Micro-CT) Undulator, Normal Length $(\mathbf{5 0} \mathbf{m})$ beamline.
(BL28B2: BM white beam, topography, BL29XU: RIKEN, 1 km BL)
Energy range:
5-113 keV,
Spatial Coherence:
$\sim 1 \mathrm{~mm}$ @ $1 \AA$ (BL20XU),
Beam Cross-section:
$\sim \mathbf{3 0} \mathrm{nm}$ (micro-focus) - $\mathbf{3 0 0} \mathbf{~ m m}$ ($\mathbf{2 1 5} \mathbf{~ m}$-beamline with BM source).
Flux Density:
$\sim 10 \mathrm{E} 14$ photons $/ \mathrm{s} / \mathrm{mm} 2$ (direct beam),
$>10 \mathrm{E} 11$ photons $/ \mathrm{s} / \mu \mathrm{m} 2$ (micro-focus).

248 m-long Beamline, BL20XU, at SPring-8

Experimental setup
Application of Coherent X-ray Beam
-X-ray In-line Holography -

Measured Point-spread-function
"Zooming Tube"
Hamamatsu Photonics C5333
Photo-cathode: CsI (~2000£),
Magnification: 5-240,
Resolution (point-spread-function): $\mathbf{0 . 7} \boldsymbol{\mu} \mathrm{m}$ in FWHM.

EX-ray Energy: 8 keV

X-ray Energy: 80 keV

Object: Gold Wire, $50 \mu \mathrm{~m}$ Diameter, Imaging Detector: Zooming Tube, C5333, Hamamatsu Photonics, Field of View: $300 \mu \mathrm{~m}$ in Diameter.

Measured Hologram of Test Object

Measurement of X-ray Coherence using Two-beam Interferometer with Prism Optics

Schematic diagram of experimental setup at beamline 20XU of SPring-8

Possible Applications

1. Two-beam Holography,
2. Phase Measurement,
3. Quantitative Measurement of Spatial Coherence,
4. Wavelength Filter, Harmonics Selection .

$$
\begin{aligned}
& \Delta \theta=\delta / \tan \theta, \\
& \delta=1.35 \times 10{ }^{-6} \rho \lambda^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \theta=2 \mu \mathrm{rad} \\
& \text { for } \rho=1.2, \lambda=1 \AA, \theta=45^{\circ} . \\
& \Delta \theta=46 \mu \mathrm{rad} \\
& \text { for } \theta=2^{\circ}
\end{aligned}
$$

Optical system for two-beam interferometer with X-ray prism.

Typical interference fringe patterns measured at an X-ray wavelength of 1 A. Beam deflection angle: $\Delta \theta=44 \mu \mathrm{rad}$.
Slit dimensions: $18 \mu \mathrm{mx} 19 \mu \mathrm{~m}$.
Measured fringe spacing is $2.3 \mu \mathrm{~m}$.
Beam overlap is $300 \mu \mathrm{~m}$. Exposure time is $\mathbf{6 0} \mathrm{s}$.

(a) $1.5 \AA$ and 3 degrees

(b) $1.0 \AA$ and 2 degrees

(c) $0.5 \AA$ and 1 degree

Interference Fringes measured with X-ray Zooming Tube.

Prism to detector distance: $\mathbf{6 . 9} \mathbf{m}$, Field of view : $100 \mu \mathrm{~m}$ in diameter, X-ray wavelength: $0.5,1.0$, and $1.5 \AA$, Glancing angle to prism surface: $1.0,2.0$, and 3.0 degrees.

Cu grid mesh $64 \mu \mathrm{~m}$ pitch

Test Patterns $5 \mu \mathrm{~m} \mathrm{~L} / \mathrm{S}$

Hologram

Reconstructed Image

Leith-Upatnieks Type Two-beam Holography $\lambda=1.0 \AA$, Sample to image detector: 6.7 m

Visibility of interference fringes.
Solid squares, circles and triangles represent experimental data, Solid line, dotted line and dashed line are respective theoretical curves for source size of $100 \mu \mathrm{~m}, 50 \mu \mathrm{~m}$, and $20 \mu \mathrm{~m}$.

Development of Hard X-ray Optics at SPring-8

1. Beamline configurations,
2. Fresnel zone plate optics

Micro- \& nano-beam generation and characterization,
Imaging microscopy and tomography applications, Holography and phase-contrast imaging, Use of quasi-monochromatic (direct undulator) radiation,
3. Total reflection mirror optics,
4. Sputtered-sliced zone plate optics,
5. Refractive lens optics,
6. Theory of resolution limit.

Experimental Setup of X-ray Microbeam/Scanning Microscopy at BL20XU

Diameter: $150 \mu \mathrm{~m}$, Designed focal Length: 100 mm at 8 keV , Outermost zone width $\left(d_{\mathrm{N}}\right): 0.1 \mu \mathrm{~m}$.

Diffraction limit $\left(=1.22 d_{N}\right): 0.12 \mu \mathrm{~m}$, numerical aperture: 7.5×10^{-4} at 8 keV , Zone material: Ta, 1μ m-thick, Supporting membrane: $\mathrm{Si}_{3} \mathrm{~N}_{4}$, or $\mathrm{SiC}, 2 \mu$ m-thick. Fabrication method: electron-beam lithography technique at NTT-AT
$\mathrm{Si}_{3} \mathrm{~N}_{4}$ membrane ($2 \mu \mathrm{~m}$-thick)

Schematic Drawing of Zone Plate Structure

Focused Beam Profile Measured by Knife-edge Scan
FZP: Ta 1μ m-thick,
Outermost Zone Width: $0.1 \boldsymbol{\mu m}$, EB-lithography at NTT-AT, Focal Length: 100 mm @ 8 keV .

Diffraction Efficiency of Ta-FZP
Closed Circle: Experimental Results, Solid Line: Calculated Efficiency assuming the Thickness of $1 \mu \mathrm{~m}$.

Total flux of microbeam: $\mathbf{1 0}^{\mathbf{9}}$ photons/s, Focused beam size: $0.12 \mu \mathrm{~m}$.

Bright-field: Transmitting beam through edge
Dark-field: Scattered beam at the edge

Dark-field Knife-edge Scan Method for Focus Test

Primary beam (direct beam) is cut off with an aperture in front of X-ray detector. The scattered X-rays are selected by the aperture.

Advantages of dark-field method:

1. Thin and phase object as knife-edge,
2. No differential processing,
3. Precise measurement.

- Result of Numerical Simulation

Assumed Cross-section of Knife-edge. Tapered edge with width of b, and phase shift of $\phi \mathbf{0}$.

Result of Numerical Simulation

Result of Knife-edge Test

 Bright-field and Dark-field methodOutermost Zone Width: 50 nm, 1st-order Focus, $f=80 \mathrm{~mm}$ @ 8 keV , Knife-edge: gold wire of $50 \mu \mathrm{~m}$ diameter.

Dark Field

70 nm line \& Space

- Measured Value

Theory
$1 \mu \mathrm{~m}$

76×163 pixels, $12.5 \mathrm{~nm} /$ pixel, Dwell Time: 0.5 s .
Scanning Microscopy
Test Patterns (Ta 500 nm-thick), X-ray Energy: 8 keV .

Kohzu Seiki, type YA-05-14.
Stepping Motor, Oriental Motor PX535MH-B.
Motor Driver, Melec, micro-step drive H-583.
Position Monitor, KEYENCE LC2420.

Test Result of Linear Translation Stage

Kohzu Seiki, type YA-05-14.
Stepping Motor, Oriental Motor PX535MH-B.
Motor Driver, Melec, micro-step drive H-583.
Position Monitor, KEYENCE LC2420.

Lifetime of Ta-FZP for radiation damage

~ 3 days in air,
>> 1 month in vacuum or in He.

Irradiation in air

FZP: $100 \mu \mathrm{~m}$ diameter, $0.25 \mu \mathrm{~m}$ outermost zone width, X-ray energy: $10 \mathrm{keV} @ B L 47 X U$, Flux density: $\sim 5 \times 10^{13}$ photons $/ \mathrm{s} / \mathrm{mm}$, Total flux: $\sim 10^{17}$ photons

Damage problem is solved at present!

Schematic Diagram Experimental Setup for Imaging Microscopy and Micro-tomography
@ BL47XU

Imaging Microscopy
Objective \&Sample:FZP with $0.25 \mu \mathrm{~m}$ outermost zone width, X-ray Energy: 8 keV .

- Coherent Illumination -

- Incoherent Illumination-

Imaging Microscopy with FZP Objective

- Effect of Beam Diffuser -

X-ray energy: 8 keV
Control of coherence is important!

Stony Meteorite Allende 8 keV , x7.61, BM3(x10), voxel size $0.13 \mu \mathrm{~m}$.
 100 projection, exposure time: $15 \mathrm{~s} /$ projection.

Diatom "Achnanthidium lanceolata" $8 \mathrm{keV}, \mathrm{x10}$, BM3(x10), voxel size $0.1 \mu \mathrm{~m}$. 360 projection, exposure time: $\mathbf{6 0} \mathrm{s} /$ projection.

X-ray Micro-tomography using Imaging Optics with Fresnel Zone Plate Objective

Low-emittance SR source is not suitable for imaging microscopy, because of
high spatial coherence:
Small source size ($\sim 10 \mu \mathrm{~m}$ vertical $\times 100 \mu \mathrm{~m}$ horizontal), Small divergent angle ($\sim 10 \mu \mathrm{rad}$).

Critical illumination with simple condenser lens:
F-number matching --> small field of view (<a few $\mu \mathrm{m}$), Coherent illumination --> Speckle noise.

Critical illumination and Köhler illumination
(best optics for imaging microscopy)

Critical illumination:
Demagnified image of source at the object plane., Each point of source corresponds to each point of field of view, Not suitable for 3rd generation SR source.

Köhler's illumination:
Infinite focus,
Each points at source to each angle of illuminating beam.

Illumination Optics for Imaging Microscopy

First experiment on imaging microscopy at SPring-8:
Parallel beam illumination
--> Edge-enhancement artifact,
Strong speckle noise.
2nd Step:

Partial Coherent illumination by diffuser
--> Less artifacts, and no speckles, Weak edge-enhancement, Nonuniform imaging properties in the field of view, Asymmetric feature of imaging properties. (off-axial illumination)

Need of Condenser Optics for Imaging microscopy.

Rayleigh's criterion (incoherent condition) [uncertainty principle in quantum physics]

$$
\Delta=0.61 \lambda / N A
$$

Parallel beam illumination:

$$
\Delta=0.82 \lambda / N A
$$

$N A$: numerical aperture of objective lens.
With condenser optics of 1.5NA:

$$
\Delta=0.57 \lambda / N A
$$

$$
N A=\sin \theta
$$

Useful formula:

$$
\Delta=1.22 d r_{\mathrm{N}}
$$

$d r_{\mathrm{N}}$: Outermost zone width

$$
\begin{aligned}
& \text { Example: } \\
& d r_{\mathrm{N}}=100 \mathrm{~nm}, \\
& \Delta=122 \mathrm{~nm} . \\
& N A=7.75 \times 10^{-4} \text { at } 8 \mathrm{keV} . \\
& (8 \mathrm{keV}=1.55 \AA)
\end{aligned}
$$

Spatial Resolution of FZP Microscope

Geometrical defocusing:

$$
2 D \times N A
$$

Limit of defocusing:
Diffraction-limited resolution $=$ Geometrical defocusing

$$
2 D \times N A=0.61 \lambda / N A,
$$

Depth of focus (tolerance of sample thickness):

$$
2 D=0.61 \lambda / N A 2 .
$$

In tomography measurement,
Depth of focus > Sample diameter.

$$
\begin{aligned}
& \text { Example: } \\
& \Delta=122 \mathrm{~nm}\left(d r_{\mathrm{N}}=100 \mathrm{~nm}\right), \\
& N A
\end{aligned}=7.75 \times 10^{-4} \text { at } 8 \mathrm{keV} .
$$

Depth of Focus

Second order approximation and the Rayleigh's quarter wavelength rule:
$\mid\left\{-r_{\mathrm{a}} r_{\mathrm{n}} \cos \phi / a+r_{\mathrm{b}} r_{\mathrm{n}} \cos \phi / b\right\}+1 / 2\left\{r_{\mathrm{n}}{ }^{2} / a+r_{\mathrm{n}}{ }^{2} / b-n \lambda\right\}$
$-1 / 8\left\{\left(r_{\mathrm{a}}^{2}-2 r_{\mathrm{a}} r_{\mathrm{n}} \cos \phi+r_{\mathrm{n}}^{2}\right)^{\left.2 / a^{3}-r_{\mathrm{a}}^{4} / a^{3}+\left(r_{\mathrm{b}}^{2}+2 r_{\mathrm{b}} r_{\mathrm{n}} \cos \phi+r_{\mathrm{n}}^{2}\right)^{2 / b^{3}}-r_{\mathrm{b}}^{4} / b^{3}\right\} \mid<\lambda / 4 .}\right.$

Aberration Theory of FZP Microscope by Wave Optics

Depth of focus (tolerance of sample thickness for tomography):

$$
\begin{aligned}
& 2 D=0.61 \lambda / N A^{2}, \\
& N A \sim r_{\mathrm{N}} / f, D \sim r_{\mathrm{a}} \quad-\cdots \quad r_{\mathrm{a}} r_{\mathrm{N}}^{2} / f^{2}<0.3 \lambda \\
& r_{\mathrm{N}} / f \ll 1, r_{\mathrm{a}} / f \ll 1 \text { for hard -X-ray FZP. }
\end{aligned}
$$

Other wavefront aberrations:

$$
\begin{aligned}
& 3 r_{\mathrm{a}}^{2} r_{\mathrm{N}}{ }^{2} / f^{3}<\lambda, \\
& 2 r_{a_{\mathrm{N}}} r^{3} / f^{3}<\lambda, \\
& 1 / 2 r_{\mathrm{N}} / f^{3}<\lambda
\end{aligned}
$$

Chromatic aberration:

$$
\Delta \lambda / \lambda<0.61 / N,(N: \text { total zone number }) .
$$

$\Delta \lambda / \lambda \sim 10^{-4}$ (crystal monochromator, Si 111)

$$
\begin{aligned}
& \text { Example: } \\
& f=100 \mathrm{~mm} \text { at } 8 \mathrm{keV}, \\
& r_{\mathrm{N}}=77.5 \mu \mathrm{~m}, \\
& N=388, \\
& N A=7.75 \times 10^{-4} \text { at } 8 \mathrm{keV} . \\
& \quad(\lambda=1.55 \AA) \\
& M \sim 70
\end{aligned}
$$

Most serious aberration is Depth of Focus!

Hard X-ray Imaging Micro-tomography

Fresnel zone plate $=$ Chromatic aberration,
Requirement on monochromaticity for Fresnel zone plate \sim Number of Fresnel zone.
---> $\Delta \lambda / \lambda<1 / \mathrm{N}$ (number of Fresnel zone)
$\mathbf{N} \sim$ or >100, (requirement for natural lens approximation).

$$
\begin{aligned}
& \Delta \lambda / \lambda \sim 10^{-4} \text { with crystal monochromator, } \\
& \text { too narrow! ---> loss of photon flux. } \\
& \text { Use of direct undulator radiation, } \\
& \Delta \lambda / \lambda \sim 100 \text {. } \\
& --->\text { High flux microbeam, } \\
& \text { Short Exposure Time. }
\end{aligned}
$$

BL40XU of SPring-8 (High Flux Beamline)

1. Undulator radiation without monochromator, $\Delta \lambda / \lambda \sim 1.2 \%$ @ $\varepsilon=3 \mathrm{~nm} \mathrm{rad}$
2. Helical Undulator --> Suppression of higher order,
3. Condenser Optics: K-B mirror

Measured Spectra of Undulator Radiation Front-end Slit Aperture:
$15 \mu \mathrm{rad}$ (horizontally) x $5 \mu \mathrm{rad}$ (vertically)
Available flux $\boldsymbol{\sim} \mathbf{1 0 0}$ times that at conventional beamlines (undulator beamlines with crystal monochromator.

X-ray Microbeam \& Imaging Microscopy with Sub-micron resolution and high flux! (~ 100 times, compared with conventional beamlines)

Experimental Setup for Imaging Microscopy at BL40XU SPring-8

Object: Cu mesh, 2000 lines/inch
$10 \mu \mathrm{~m}$

Object: Fresnel zone plate, $0.25 \mu \mathrm{~m}$ outermost zone width

Image of test object
Objective: FZP, $0.25 \mu \mathrm{~m}$ outermost zone width, 100 zones, Magnification: 11.3, X-ray energy: 8.34 keV , Exposure time: 1.5 ms (Single Shot)

Hard X-ray Imaging Microscopy with Fresnel Zone Plate Objective \& Quasi-monochromatic Undulator Radiation at BL40XU

Optical Layout of Microbeam Experiment at BL40XU of SPring-8

Measured Profiles of Focused Beam

X-ray Energy: 8.317 keV
Total Flux of Focused Beam:
$\sim 2 \times 10{ }^{12}$ photons/s

151×334 pixels,
$0.3 \mu \mathrm{~m} / \mathrm{pixel}$,
0.3 s dwell time.
66×126 pixels, $0.2 \mu \mathrm{~m} / \mathrm{pixel}$, 0.2 s dwell time.

Scanning Microscopic Images of Resolution Test Patterns

Microbeam and Scanning Microscopy with FZP and Quasi-monochromatic Undulator Radiation

Slit or Pinhole
Monochromator (10-100 $\mu \mathrm{m}$)

Experimental Setup of X-ray Microbeam/Scanning Microscopy with Total-reflection Mirror Optics (Kirkpatrick-Baez Configuration)

Kirkpatrick-Baez Optics with Aspherical (Plane Parabola) Mirrors, L1: $\mathbf{4 5} \mathrm{mm}$, L2: $\mathbf{4 5} \mathrm{mm}$, L3: $\mathbf{2 5} \mathrm{mm}, f: \mathbf{7 5} \mathrm{mm}$, Glancing angle: $\mathbf{2 . 8} \mathbf{~ m r a d}$. (Pt coated SiO_{2}), Fabricated at Cannon Co. Japan.

Focused Beam Profiles measured by Knife-edge Scan

Scanning Microscopy Image of Test Patterns $0.1 \mu \mathrm{~m}$ line\&space X-ray Energy: 12 keV

Micirobeam and Scanning Microscopy with Total-reflection Mirror Optics

- Measured data (FWHM)
- Diffraction limit
\therefore - Geometrical Size

Energy Dependence of Resolution

Pt surface,
Glancing angle: 2.8 mrad.

Design Parameters of Parabolic Mirrors

Total Reflection Mirror for High Energy X-ray Microbeam

Total Reflection Mirror for High Energy X-ray Microbeam

Fabrication Process of Sputtered-sliced Fresnel Zone Plates

SEM Image of Sputtered-sliced Fresnel Zone Plate

Au Core ($50 \mu \mathrm{~m}$ in diameter), Cu/Al 50 Layers, Outermost zone width of $0.15 \mu \mathrm{~m}$.

X-ray wavelength: $1.4 \AA(8.9 \mathrm{keV})$, f $\sim 158 \mathrm{~mm}$,
$\mathrm{Cu} / \mathrm{Al}$ sputtered-sliced FZP (50 layers), Core (beam stop): Au $50 \mu \mathrm{~m}$ in diameter, Outermost zone width: $0.25 \mu \mathrm{~m}$, Thickness: ~ $\mathbf{2 0} \boldsymbol{\mu} \mathrm{m}$.
Diffraction efficiency: 25\% @ $1.4 \AA$

X-ray wavelength: $0.5 \AA$ (24.8 keV), $\mathrm{f} \sim \mathbf{2 2 0} \mathrm{mm}$, $\mathrm{Cu} / \mathrm{Al}$ sputtered-sliced FZP (70 layers), Core (beam stop): Au $100 \mu \mathrm{~m}$ in diameter, Outermost zone width: $0.09 \mu \mathrm{~m}$, Thickness: $\sim \mathbf{~ 6 0 ~} \boldsymbol{\mathrm { m }}$.
Sagittal Focus (1/4 of annular aperture)

Focused Beam Profile Measured by Edge-scan @BL20XU

Diffraction efficiency of Fresnel zone plate (first order) Cu/Al Sputtered-Sliced FZP, Thickness: ~20 $\mu \mathrm{m}$.
Core: Gold, $50 \mu \mathrm{~m}$ in diameter, 50 layers.

Calculated diffraction efficiency of Fresnel zone plate
$\mathrm{Cu} / \mathrm{Al}$ multilayer
Thickness: $\mathbf{2 0} \boldsymbol{\mu \mathrm { m }}$

$0.3 \mu \mathrm{~m}$ line \& space
$0.2 \mu \mathrm{~m}$ line \& space
X-ray wavelength: 1.4 Å, 128×64 pixels, $0.0625 \mu \mathrm{~m} / \mathrm{pixel}$, Dwell time: $0.4 \mathrm{~s} /$ pixel.

$0.1 \mu \mathrm{~m}$ line $\&$ space
X-ray wavelength: 1.0 Å, 256×70 pixel, $0.0625 \mu \mathrm{~m} / \mathrm{pixels}$, Dwell time: $\mathbf{0 . 4} \mathbf{~ s} /$ pixel.

Scanning Microscopic Image of Resolution Test Pattern

Microfocusing/scanning microscopy with SS-FZP at 82 keV

Microbeam with Sputtered-sliced FZP

Focused Beam Profile Measured by Edge-scan @BL20XU

X-ray wavelength: $0.124 \AA(100 \mathrm{keV}), \mathrm{f} \sim 900 \mathrm{~mm}$, $\mathrm{Cu} / \mathrm{Al}$ sputtered-sliced FZP (70 layers), Core (beam stop): Au $50 \mu \mathrm{~m}$ in diameter, Outermost zone width: $0.16 \mu \mathrm{~m}$, Thickness: ~ $\mathbf{1 8 0} \boldsymbol{\mu} \mathrm{m}$.

Resolution Limit of X-ray Microscope

General Theory
 Rayleigh's criterion (Diffraction Limit in Classical Optics)

$\delta ; \mathbf{C} \lambda / \mathrm{NA}$,

$\mathbf{N A}=\mathbf{n} \sin \theta$,
n: Index of Refraction,
C ~ 1 (constant, dependent on optics configuration).

Typically, $\mathrm{C} \sim 0.61$ (Circular aperture), $\mathrm{n} \sim 1$ (in air), $\sin \theta \sim 0.5$ ($\mathrm{F} \sim 1$) for visible light
$\delta \sim \lambda$: Resolution limit of Optical Microscope.

General Theory

Uncertainty Principle (Quantum Mechanics)

$$
\Delta \mathrm{p} \Delta \mathrm{x} \geq h
$$

Momentum of Photon: $\boldsymbol{h} \boldsymbol{\lambda}$
Momentum Spread by Focusing Optics: $\Delta \mathrm{p}=2|\mathrm{p}| \sin \theta$

$$
\Delta Y \geq \lambda /(2 \sin \theta)
$$

How about hard X-ray microscopy?

Total Reflection Mirror Optics

Elliptical Mirror Optics:
NAmax $=\mathbf{2 \theta c}$

$$
\Delta x \geq 0.61 \times \lambda /(2 \theta c)
$$

Using free-electron approximation,

$$
\begin{equation*}
\theta c(\mathrm{rad}) \sim 1.6 \times 10^{-2} \lambda \rho 1 / 2 \tag{3}
\end{equation*}
$$

$\rho(\mathrm{g} / \mathrm{cm} 3)$: Density of Mirror Material,
λ (nm): X-ray wavelength.

The theoretical limit of spatial resolution, Δx, is determined only by the density of the reflector surface material, $\sqrt{\rho}$.
The limit of spatial resolution is approximately 10 nm .

For combined mirror optics
(Wolter-type-mirror or tandem-toroidal-mirror optics),

$$
\begin{equation*}
\Delta x=0.61 \times \lambda /(4 \theta c) \tag{4}
\end{equation*}
$$

1. P. Kirkpatrick and A. V. Baez: J. Opt. Soc. Am. 38 (1948) 766.
2. Von H. Wolter: Ann. Physik 10 (1952) 94.
3. Y. Sakayanagi: Optica Acta 23 (1976) 217.

X-ray Wave Guide

Planar wave guide, 1-D solution,

Boundary Condition: $2 \mathrm{~d} \sin \theta=\mathrm{m} \lambda, \mathrm{m}=1,2,3, \ldots .$.

Lowest mode of propagating wave: $\mathbf{m}=1$,
$d \sin \theta=\lambda / 2$,
d: gap of waveguide (inner diameter of waveguide)
θ : glancing angle to wall

When the phase jump at total reflection $=\pi$ (case of $\theta \ll \theta c$), minimum size of wave guide, do, $d o=\lambda /(2 \theta) \leq \lambda /(2 \theta c)$.

However, the penetration depth of evanescent wave, t,
$t \sim \lambda /\left(\theta c^{2}-\theta^{2}\right)^{1 / 2}$. So, effective broadening of wavepacket is
$\Delta \mathrm{x} \sim \mathrm{t} \sim \lambda / \theta \mathrm{c}$: the same as that of total reflection mirror optics.
or $\Delta x \leq \lambda /(2 \theta c)$, simply from uncertainty principle.
cf. C. Bergemann, H. Keymeulen and J. F. van der Veen: Phys. Rev. Lett. 91 (2003) 204801.

Numerical Calculation of Wave-packet in Wave-guide

Electric Field Intensity in the Wave-guide

$$
\begin{aligned}
& \text { Si }(\rho=2.34), \lambda=1.28 \AA, \\
& d=60 \AA, \text { and } d=160 \AA .
\end{aligned}
$$

Refractive Lens Optics

Spherical Lens: Spherical Aberration

$$
\begin{equation*}
\left(x^{2}+y^{2}\right)^{1 / 2}+n(f-x)=f \tag{6}
\end{equation*}
$$

n : index for refraction

Refractive Lens: Exact Solution

Diffraction-limited Resolution of Single Refractive Lens

Considering phase shit of $2 m \pi$, $(m \lambda, m=1,2,3, \ldots$.
$\left(\mathbf{x}^{2}+\mathbf{y}^{2}\right)^{1 / 2}+\mathbf{n}(f-\mathrm{x})=f+\mathbf{m} \boldsymbol{\lambda}$,
(8)
$[x-\{f+m \lambda /(1-n)\} n /(1+n)]^{2} /\left[\{f+m \lambda /(1-n)\}^{2} /(1+n)^{2}\right]+\mathbf{y}^{2} /\left[\{f+m \lambda /(1-n)\}^{2}(1-n) /(1+n)\right]=1 . \quad$ (9)
Numerical Aperture of the Lens (NA):
NAmax $=[(1-n) /(1+n)]^{1 / 2} /[1 /(1+n)]=\left(1-n^{2}\right)^{1 / 2}$.
Using $\mathrm{n}=1-\delta$, and $\delta \ll 1$,

$$
\begin{aligned}
& \text { NAmax } \sim(2 \delta)^{1 / 2} . \\
& \theta c \sim(2 \delta)^{1 / 2} . \\
& \Delta=0.61 \times \lambda / \theta c .
\end{aligned}
$$

cf. Y. Suzuki, Jpn. J. Appl. Phys. 43 (2004) 7311-7314.

Expansion to Fresnel Lens and Fresnel Zone Plate

The nesting configuration, the series of ellipsoids $\mathbf{m}=0,1,2,3,,,, M$
Fresnel zone plate at $f=\mathrm{x}$:

$$
\begin{align*}
& \left(f^{2}+\mathrm{y}^{2}\right)^{1 / 2}=f+\mathrm{m} \lambda \tag{14}\\
& \mathrm{y}=\left[2 \mathrm{~m} \lambda f+(\mathrm{m} \lambda)^{2}\right]^{1 / 2} \tag{15}
\end{align*}
$$

When $f \gg \mathrm{~m} \lambda$, by neglecting the higher-order terms,

$$
\begin{equation*}
\mathrm{y}=(2 \mathrm{~m} \lambda f)^{1 / 2} . \quad[\text { Zone Plate Equation] } \tag{16}
\end{equation*}
$$

The major axis of the ellipse: $\{f+m \lambda /(1-n)\} /(1+n)$,
The major axis of the ellipsoid for the outermost zone should be smaller than the focal length f.

$$
\{f+\mathrm{m} \lambda /(1-\mathrm{n})\} /(1+\mathrm{n}) \leq f
$$

The possible outermost zone for the planar zone plate:

$$
\begin{aligned}
& \{f+\mathbf{M} \lambda /(1-\mathbf{n})\} /(1+\mathbf{n})=f . \\
& \mathbf{M}: \text { the maximum m. } \\
& \begin{aligned}
& \mathbf{M} \lambda /(\mathbf{1}-\mathbf{n})= \mathbf{n} f . \\
& \theta \max =(2 \mathrm{M} \lambda f)^{1 / 2} / f \\
&=\left[2 f^{2} \mathbf{n}(1-\mathrm{n})\right]^{1 / 2} / f \\
& \sim(2 \delta)^{1 / 2},
\end{aligned}
\end{aligned}
$$

cf. Y. Suzuki, Jpn. J. Appl. Phys. 43 (2004) 7311-7314.

Theoretical Resolution Limit of Total Reflection Mirror Optics, Wave-Guide, Refractive Lens, Fresnel Zone Plate

$\sqrt{ }(2 \delta) \sim 10 \mathrm{~nm}$ in hard X-ray Region

Possible Ways to Nanometer Resolution

1. Combined Refractive Lens,

Diffraction Limited Resolution

$\sim 0.61 \times \lambda /(N \theta c)$
N : Number of Combined Lens

Spherical lens might be feasible,
because smaller lens has smaller aberration.
cf. C. Schroer and B. Lengeler, Phys. Rev. Let. 94 (2005) 054802

Possible Ways to Nanometer Resolution

2. Three Dimensional Zone Plate (Volume Zone Plate or Laue Lens)

Nested Multilayer Structure of Ellipse of Rotation with Optical Path Difference of $m \lambda$.

Ideal only on Focusing Property.
H. C. Kang et al., Phys. Rev. Lett. 96 (2006) 127401,
C. Schroer, Phys. Rev. B 74 (2006) 033405.

Next limit: atom size with $\lambda / 4$ rule (Rayleigh limit)
$\sim 1 \mathrm{~nm}$.

ERL \& FEL

Complementary?

Which is better for users?
Time structure \& spectral structure.
Nano-optics:
Applications? Users? Practical?
R\&D of optics: 10 nm resolution -> 1 nm resolution..?

Problems in the 3rd-generation SR source, Spring-8
Most of users and experiments are 2nd generation!

Important Problems in Coherent X-ray Sources

1. Vibration: optics, light source, ground\&building
2. Temperature stability: $\sim 0.01^{\circ}$ environment.
3. Radiation damages, cooling. Same as Spring-8?
4. Speckles:

No optics without any speckles.
5. No optics is best optics?

