ERLにおける超高速レーザー技術の可能性

板谷 治郎

(独)科学技術振興機構 ERATO腰原非平衡ダイナミクスプロジェクト 研究員

Material Sciences Division Lawrence Berkeley National Laboratory

背景

2007.2~ レーザーの仕様検討、インフォーマルな議論 --> この中間報告

アウトライン

- ERLへの期待
- 超短パルスレーザー技術
- •フォトカソード励起用レーザー
- タイミング同期技術
- ALSフェムト秒スライシングビームライン

放射光とレーザー

エネルギー回収型ライナック(ERL)

March 2003, KEK

放射光将来計画検討報告 -ERL光源と利用研究-

Study Report on the Future Light Source at the Photon Factory —Energy Recovery Linac and Science Case—

高エネルギー加速器研究機構

物質構造科学研究所 放射光研究施設 加速器研究施設

©High Energy Accelerator Research Organization

コスト試算 700~800億円(2003)

<u>表 1.1: ERL の主要パラメータ</u>		
ビーム・エネルギー	$2.5 {\sim} 5.0$	GeV
入射エネルギー	10	MeV
周長	1253	m
最大電流	100	mA
規格化エミッタンス	0.1	$\mu { m m} \cdot { m rad}$
エネルギー幅 (rms)	$5 imes 10^{-5}$	
バンチ長 (rms)	$1 \sim 0.1$	ps
加速周波数	1.3	GHz
加速勾配	$10\sim 20$	MV/m

レーザー屋から見たERL

超高速レーザー技術が必須のものとして、放射光に融合できるか?

アウトライン

- ERLへの期待
- 超短パルスレーザー技術
- •フォトカソード励起用レーザー
- タイミング同期技術
- ALSフェムト秒スライシングビームライン

超短パルスレ 1. 最短パルス幅の変遷

超短パルスレーザ・

2. 超短パルスの発生と増幅

[Brabec and Krausz, Rev. Mod. Phys. 72,545 (2000)]

超短パルスレーザー 3. 光電場波形の制御

フェムト秒レーザーのデファクトスタンダード ―― しかし、繰り返しは1MHz以下

典型的なスペック
テーブルトップ規模の装置
パルス幅 30 fs
パルスエネルギー1 mJ
ピークパワー 30 GW
繰り返し 1 kHz
平均出力 1W

市販品の例(独フェムトレーザー社)

超短パルスレーザー 5. ファイバーレーザー

ファイバーレーザー発振器 ファイバーレーザー増幅器

ERLでの用途	周波数のトランシーバー	繰り返し1.3GHzの光パルス増幅器
平均出力	50 mW	1 W (プロトタイプでは、10-100 W)
繰り返し	50 MHz	100 kHz(1GHz以上も可能)
パルスエネルギー	0.1 nJ	10 μJ
典型的なスペック パルス幅	100 fs	300 fs
曲刑的たて ペック		

市販品の例(IMRA America, Inc.)

[Encyclopedia of laser physics and technology, www.rp-photonics.com]

アウトライン

- ERLへの期待
- 超短パルスレーザー技術
- •フォトカソード励起用レーザー
- タイミング同期技術
- ALSフェムト秒スライシングビームライン

電子銃のスペック

[KEK ERL Report (2003)]

レーザーだけの問題ではない

フォトカソード材料

フォトカソード材料(続)

KEK, ERL Report (2003)

C. K. Sinclair, NIMA 557, 69 (2006)

- 実績值 9 mA @ 75 MHz (Jefferson Lab, in operation)
- ERL (100mA)を実現するためには、寿命が最大の問題
- •寿命は、イオンの衝突によって制限されている。

早急なR&Dの必要性

【現状】

- 電子銃の開発が、ERL開発におけるネックとなる可能性がある。
- 現時点では、フォトカソード励起用レーザーの仕様は明確ではない。
- 材料の開発が必要(寿命、量子効率の改善)
- 電子銃の開発が必要(超高真空化、フォトカソードの交換・冷却)
- しかし、レーザー自体が市販品では実現困難なため、先行開発したい。
 (スケーリングのきく方式が望ましい)
- 早急に、材料の開発・評価体制を整えて、開発を推進する必要がある。
 (電子銃の評価用レーザーも必要?)

フォトカソード励起用レーザーの構成

ファイバーレーザー媒質の比較

	Ybガラス	Er-Ybガラス	
波長	<mark>1030 nm</mark> (Nd:YAGとほぼ一致)	<mark>1560 nm</mark> (光通信と一致)	
超短パルス化	100-200 fs (どちらも、ファイバー中の非線	>200 fs 形伝播によって制限される)	
増幅	<mark>高効率</mark> - 高い量子効率(~90%) - ESAがないので強励起可。	<mark>低効率</mark> - 低い量子効率(60%) - YbからErへのエネルギー移行 - ESAがあるので強励起が不可。	
連続波出力	~200 W (commercial) >1 kW (R&D)	<10 W (commercial) ~100 W (R&D)	
波長変換 (=> 800 nm)	低効率(<20%) - 第一段階: PPLNによる二倍波発生 - 第二段階: 二倍波を励起源とした 光パラメトリック増幅 - 波長は750-850nm付近で可変。	<mark>高効率(>80%)</mark> - 疑似位相整合素子(PPLN)の利用 - 波長は775nmで固定される。	
R&Dでの注意点	産業用に高出力化が進んでいる。 励起波長(~930 nm)が共通している	通信・アイセーフ用のため、高出力化の需要が少 ため、同時に開発を進められる可能性がある。	りない

フォトカソード励起用レーザーの構成例 1. Ybファイバー増幅器

フォトカソード励起用レーザーの構成例 2. Er-Ybファイバー増幅器

パルスピッカーについて

- 1.5 GHzのパルス列を、必要に応じて間引けることが望ましい。
 (例)レーザーと同期した時分割実験では、レーザーと同期したX線パルス「だけ」が欲しい。
- Mach-Zender干渉計による10GHzのパルスピッキングは通信用に(=低いパワーで)実現している。

	通常の非線形結晶(LN) Si		10 Gb/s (commercial) 40 Gb/s (R&D) 30Gb/s (R&D)	
++				

 また、ファイバー増幅器へのインテグレーションが 可能。

レーザーパルスの空間整形について

•フォトカソードは、一様な強度分布での光照射が望ましい。

•ガウシアンビームを整形するような反射率分布をもつミラーのスループットは最大40%

液晶などによる波面整形は可能。
 位相マスクによってスループットを>80%に高めることは、原理的には可能。

フォトカソード励起用レーザーに 関するまとめ

- ファイバー増幅器のレーザー媒質の候補として、Erファイバーと Ybファイバーがある。
- ・現時点では優劣はつけがたい。
 両方式で初段の低出力増幅器を開発し、全体のパフォーマンスを検証することが望ましい。
- フォトカソード材料や電子銃の設計とレーザー開発とは車の両輪であり、連携した開発体制が望ましい。

アウトライン

- ERLへの期待
- 超短パルスレーザー技術

- フォトカソード励起用レーザー
 タイミング同期技術
- ALSフェムト秒スライシングビームライン

光信号の伝送・分配 1. 周波数コム

[[]Cundiff and Ye, Rev. Mod. Phys. 75, 325 (2003).]

- モード同期レーザーを周波数の
 クロックとして使う。
- ・パルス列の繰り返し周波数(RF)
 =周波数コムの間隔
- 光ファイバーによる長距離伝送、 分配が容易。
- RFのビートを検出することにより、
 二つのモード同期レーザーのタイミングを高精度に同期できる。
- •光検出器を介して、RF信号を発 生できる。

光信号の伝送・分配 2. 周波数コムの応用例

【基本的な考え方】

- •モード同期レーザーを、周波数の「トランシーバー」として使う。
- ファイバーで送った光を逆に戻して、マスタークロックとのタイミングのずれを測定、補正する。
 【特徴】
- 同軸ケーブルでRF信号を送るよりも高精度な同期が得られる。
- 光ファイバーは、加速器からの電気的擾乱を受けにくい。

[JILA group, Rev. Sci. Inst. 78, 21101 (2007).]

ERLでの同期精度の目標

【妥当な目標】 タイミング信号(光ー光実験)の精度 = 10-20 fs

関係する時間スケール	
ERLから得られるX線のパルス幅	100 fs
	<50 fs? (レーザースライシング等)
加速器のRFの位相ジッター	20 fs (~0.01度)
光ファイバー(>1km)でのジッター	10 fs(現在のstate-of-art)

ERLのタイミング同期システム

1kmのファイバー往復に要する時間は、10µsである。 その間に、マスタークロックのタイミングのゆらぎを10-20fs以下に抑える必要がある。

$$\frac{10 \, \text{fs}}{10 \, \mu \text{s}} = 10^{-9}$$
 (積算時間 10 μ s)

長時間のジッター(ドリフト)は問題ではなく、むしろ短時間(<100 μs)でのタイミング揺らぎが問題。 => 原子時計の利用は長時間のジッターを補正するだけであり、必ずしも必要ではない。

周波数基準の選択

(精度) ∝ (積算時間)^{-1/2}

積算時間10μsでは10⁻⁹ => 積算時間1秒では3x10⁻¹²

市販の周波数標準(積算時間1秒)

安定化した水晶発振子 水素メーザー	10 ⁻¹⁰ ~10 ⁻¹² 2x10 ⁻¹³	} RF出カ
安定化したモード同期発振器 (水素メーザーに同期)	5x10 ⁻¹³	光コム出力

タイミング同期システムのまとめ

- ERLでは、10-20フェムト秒のタイミング同期が実現可能である。それを視野に入れたタイミング同期システムの開発が望ましい。
- ・最有力は、フェムト秒レーザーの周波数コムをタイミングの「トランシーバー」として使う方式である。その開発も、フォトカソード励起レーザーと平行して行うことが望ましい。

アウトライン

- ERLへの期待
- 超短パルスレーザー技術
- •フォトカソード励起用レーザー
- タイミング同期技術

• ALSフェムト秒スライシングビームライン

Advanced Light Source (ALS)

- •米国エネルギー省の第三世代放射光(1.9 GeV)
- •35のBLが稼働中
- •トップオフモードを準備中
- フェムト秒X線発生(BL5.0.1)
 トムソン散乱 [Science 274, 236 (1996)]
 レーザースライシング [Science 287, 2237(2000)]
 現在アップグレードしたBLを立ち上げ中
- •アンジュレーター追加による円偏光化も計画中
- 隣接機関との有機的な連携
 UC Berkeley
 Lawrence Berkeley National Lab

MSD Review - Aug. 2005

運動している電子は、

- 前方からはローレンツ収縮した磁場の波を、
- •後方からはドップラーシフトした電場の波を見る。

★ HHG flux from F. Krausz, laser: 10 fs, 3 mJ/pulse, 60 W

+ Plasma source flux in mrad² from Rose-Petruck, laser: 40 fs, 1 mJ/pulse, 60 W (continuum includes projected 10⁵ improvement)

Cu K_{α} - 10¹⁰ ph/s/4 π (proj. 10¹² with Hg target) cont. 6x10⁷ ph/s/4 π (integ. from 7-8 keV)

ALS typical average x-ray flux undulator ~10¹⁵ ph/s/0.1% BW bend-magnet ~10¹³ ph/s/0.1% BW **RF Bunch Deflection Scheme** x10³-10⁴ enhencement in flux/pulse 200 fs pulse duration

ERLにおける レーザースライシングの可能性

レーザースライシングにより
X線の短パルス化
レーザーとの完全なタイミング同期
が実現できる。

• ERLでは、電子バンチの時間幅が短いため、バックグラウンドの少ないスライシングが実現できる。