単層カーボンナノチューブとフラーレンピーポッドの 高分解能光電子分光

都立大院理¹、IFW-Dresden²、産総研³、広大院理⁴、広大放射光セ⁵ 木原英夫¹、塩澤秀次²、佐々木直也¹、中村聡¹、吉田徹夫¹、高山泰弘¹、石井広義¹、 宮原恒昱¹、鈴木信三¹、阿知波洋次¹、兒玉健¹、片浦弘道³、東口光晴⁴、崔小宇⁵、 有田将司⁵、仲武昌史⁵、島田賢也⁵、生天目博文⁵、谷口雅樹^{4,5}

フラーレンを内包したカーボンナノチューブは、フラーレンピーポッドと呼ばれ、応用・ 基礎物理学的観点から注目されている。特に、C₆₀ ピーポッドの電子状態は、理論および実験 の両面から研究されており、C₆₀ の 状態とナノチューブの NFE 状態が混成することで、C₆₀ の LUMO 状態の一部がフェルミ準位(E_F)近傍に現れることが理論的に予想されている。そ こで、我々は単層カーボンナノチューブ(SWNT)と、C₆₀ ピーポッド(C₆₀PPD)の高分解能 光電子分光を、KEK-PF と HiSOR で行った。図 1 は価電子帯全体の光電子スペクトルである。 内包された C₆₀ スペクトルは、C₆₀PPD のスペクトルから空の SWNT のスペクトルを差し引く ことで求めた。得られたスペクトルの構造は、固体の C₆₀ のスペクトルのそれと大変よく似て おり、理論予想とは異なって LUMO 状態の一部を E_F 近傍で観測できなかった。図 2 は、hv =8.9 eV (ΔE = 3.8meV)の放射光を用いて 6 K の試料温度で測定された光電子スペクトルである。 図に示した様に、C₆₀ を内包することによっても、van Hove 特異点による 3 つのピーク位置に 変化は見られなかった。また、 E_F 近傍のスペクトル形状に変化は見られず、C₆₀PPD の電子状 態も SWNT のものと同様にべき依存を示していた。K ドープをした場合では、SWNT の電子 状態が朝永 - ラッティンジャー流体(TLL)からフェルミ流体へと転移することが報告されて いるが、C₆₀PPD においては TLL 状態に変化は見られなかった。

図1 価電子帯の光電子スペクトル

図2 E_F近傍の高分解能光電子スペクトル