エピタキシャル応力を制御した $La_{0.6}Sr_{0.4}MnO_3$ 薄膜の放射光光電子分光

東大院工¹,東大院理²,東大新領域³,東大物性研⁴,東北大金研⁵,物材機構⁶ 摩庭 篤¹,近松 彰¹,和達 大樹²,組頭 広志¹,尾嶋 正治¹, 藤森 淳^{2,3}, Mikk Lippmaa⁴,川崎 雅司⁵,鯉沼 秀臣⁶

The synchrotron-radiation photoemission spectroscopy of strain-controlled $La_{0.6}Sr_{0.4}MnO_3$ thin films.

The Univ. of Tokyo^{1,2,3}, ISSP⁴, Tohoku Univ.⁵, and National Institute for Material Science⁶ A. Maniwa¹, A. Chikamatsu¹, H. Wadati¹, H. Kumigashira¹, M.Oshima¹,

A. Fujimori¹, M. Lippmaa², M. Kawasaki³ and H. Koinuma⁴

La_{0.6}Sr_{0.4}MnO₃ (LSMO) は、超巨大磁気抵抗効果や完全スピン偏極強磁性を示すこ とから次世代磁気デバイスへの応用が期待されている^[1]。しかしながら、強相関酸化 物薄膜の特性はエピタキシャル応力に大きく依存することが知られている^[2]。そこで 今回我々は、応力がもたらす電子状態変化について調べるために、様々な基板上に LSMO 薄膜を作製しその放射光光電子分光評価を行った。

実験には KEK-PF BL2C に設置したレーザーMBE + *in-situ* 光電子分光複合装置を用いた。LaAlO₃ (LAO, LSMO とのミスマッチ -2%)、(LaAlO₃)_{0.3} - (SrAl_{0.5}Ta_{0.5}O₃)_{0.7} (LSAT, ±0%)及び SrTiO₃ (STO, +1%)の(100)基板上

へ LSMO 薄膜を作製し、その場 (*in-situ*) 放射 光光電子分光測定を行った。

図1にエピタキシャル応力のそれぞれ異なる LSMO 薄膜の価電子帯光電子スペクトルを示す。結合エネルギー3~8 eV に存在する O 2p バンドにはあまり変化が見られないのに対し、 フェルミ準位近傍の Mn 3d eg 状態において、 LSMO/LAO (反強磁性絶縁体相)のピーク位 置が LSMO/LSAT 及び LSMO/STO (強磁性金 属相)に比べて高結合エネルギー側に約 0.3 eV シフトしているといった明確な変化が観測さ れた。この結果は、eg 状態の高結合エネルギー 側へのシフトによる金属-絶縁体転移が引き 起こされていることを示している。

図1 LSMOの価電子帯スペクトル 挿入図はフェルミ準位近傍の拡大図。

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

[2] Y. Konishi et al., J. Phys. Soc. Jpn. 68, 3790 (1999).