量子ナノ分光ユーザーグループ

基板応力下における La_{0.5}Sr_{0.5}MnO₃ 薄膜の放射光光電子分光 東大院工¹、JST-CREST²、東大院理³、東大新領域⁴、東大物性研⁵、東北大金研⁶ 摩庭 篤¹、近松 彰¹、和達 大樹³、堀場 弘司^{1,2}、組頭 広志^{1,2}、尾嶋 正治^{1,2}、 藤森 淳^{3,4}、Mikk Lippmaa⁵、川崎 雅司^{2,6}、鯉沼 秀臣^{2,4}

In-situ photoemission study on La_{0.5}Sr_{0.5}MnO₃ thin films under physical pressure induced by epitaxial strain The Univ. of Tokyo¹, JST-CREST², ISSP³, Tohoku Univ.⁴

A. Maniwa¹, A. Chikamatsu¹, H. Wadati¹, K. Horiba^{1,2}, H. Kumigashira^{1,2}, M.Oshima^{1,2}, A. Fujimori¹, M. Lippmaa³, M. Kawasaki^{2,4}, and H. Koinuma^{2,4}

 $La_{1,x}Sr_xMnO_3$ (LSMO) が示す超巨大磁気抵抗効果等の興味深い物性は、電荷・スピン・軌道の自由度の競合から生じている。そのため、その物性は圧力下で劇的に変化することが知られている。そこで今回我々は、2軸圧力がもたらす電子状態変化について調べるために、基板応力(2軸圧力)により電子相を制御したLSMO(x = 0.5) 薄膜[1]を作製し、「圧力下」での光電子分光を行った。実験は KEK-PF BL2C に設置したレーザーMBE + *in-situ* 光電子分光複合装置で行った。格子定数の異なる基板(LaAlO₃(LAO)(LAO)_{0.3} - (SrAl_{0.5}Ta_{0.5}O₃)_{0.7}(LSAT)及び SrTiO₃(STO)の(100)基板上に成長させたLSMO 薄膜は、超高真空下を搬送することにより測定した。

図1にエピタキシャル応力の異なる LSMO 薄膜におけるフェルミ準位 (E_{F}) 近傍の 光電子スペクトルを示す。基板応力がほとんど無視できる LSMO/LSAT (強磁性金属)

では結合エネルギー約 0.8 eV に存在した Mn 3d e_g 状態が、圧縮応力(-1.8%)が印 加された LSMO/LAO(反強磁性絶縁体) において約 0.2 eV 高結合エネルギーにシ フトしている様子が明確に観測された。ま た、拡張応力(+ 1.1%)を印加した LSMO/STO(反強磁性揺らぎを伴った強磁 性金属)においても、わずかではあるが同 様の高結合エネルギー側へのシフトが見 られた。これらの e_g 状態のシフトは、ヤー ン・テラー分裂に起因した変化であると考 えられる。

準位近傍における光電子スペクトル。

[1] Y. Konishi et al., J. Phys. Soc. Jpn. 68, 3790 (1999).