Soft X-ray Emission Sub-Group

Electronic structure of Pd$_{42.5}$Ni$_{7.5}$Cu$_{30}$P$_{20}$ excellent bulk metallic glass former: Comparison to the reference Pd$_{40}$Ni$_{40}$P$_{20}$ glass

S. Hosokawa, H. Sato,¹ N. Hppo,² K. Mimura,³ Y. Tezuka,⁴ T. Ichitsubo,⁵ E. Matsubara,⁵ and N. Nishiyama⁶
Hiroshima Inst. Tech., ¹Hiroshima Univ., ²Hiroshima City Univ., ³Osaka Pref. Univ., ⁴Hirosaki Univ., ⁵Kyoto Univ., ⁶RIMCOF

Bulk metallic glasses of Pd-Ni-Cu-P alloys, discovered by Nishiyama and Inoue [1], have intensively been studied due to their good glass-forming ability (GFA). They have optimized the concentration dependence of the critical-cooling-rate (CCR), and found that Pd$_{42.5}$Ni$_{7.5}$Cu$_{30}$P$_{20}$ has at present the slowest CCR of 0.067 K/s and can form a massive bulk glass with a diameter of more than 40 mm by simple water-quenching [2].

In order to clarify the origin of the excellent GFA from the viewpoint of electronic structure, photoemission spectrum (PES) [3], and soft X-ray emission (SXES), and core absorption spectra were measured at BL7/HISROR and BL2C/PF, respectively, as well as in-house inverse-photoemission spectrum [4]. Solid curves in the figures show the Pd 4$d$ partial density of states (DOS) estimated from the incident photon energy ($h\nu$) dependence of the PES spectra of (a) Pd$_{42.5}$Ni$_{7.5}$Cu$_{30}$P$_{20}$ glass together with (b) the reference Pd$_{40}$Ni$_{40}$P$_{20}$ glass, having a worse CCR of 1.6 K/s. The PES spectra at $h\nu = 50$ eV given as dashed lines for the comparison. The Ni 3$d$ (triangles) and Cu 3$d$ (circles) partial DOSs obtained from the SXES measurements are also given.

From these spectra in the figures, it was found that the Pd 4$d$ partial DOS near the Fermi energy largely decreases and becomes localized by replacing the Ni atoms with the Cu atoms. They are largely different from X-ray PES spectra of polycrystal pure Pd metal given at the bottom of the figures. On the other hand, the Ni 3$d$ partials remain unchanged in the shape. This may be closely related to the excellent GFA in the Pd$_{42.5}$Ni$_{7.5}$Cu$_{30}$P$_{20}$ bulk metallic glass due to a selective formation of Pd-P covalent bonds. This finding is strongly supported by a recent structural study using anomalous X-ray scattering technique [5].