弘前大理工 A 、広島大院理 B 、JASRI C 、SAGA-LS D 、KEK·PF E 、京大 F

手塚泰久^A、藤田康男^A、佐々木俊之^A、岩本貴徳^A、沖恵^B、中島伸夫^B、大沢仁志^C、

石地耕太朗^D、岩住俊明^E、五十棲泰人^F

Resonant X-ray Raman Scattering of BaTiO₃

Hirosaki Univ.^A, Hiroshima Univ.^B, JASRI^C, SAGA-LS^D, KEK-PF^E, Kyoto Univ.^F,

Y. Tezuka^A, T. Sasaki^A, Y. Fujita^A, T. Iwamoto^A, M. Oki^B, N. Nakajima^B, H. Osawa^C, K. Ishiji^D, T. Iwazumi^E, Y. Isozumi^F

強誘電体 BaTiO₃の共鳴 X 線ラマン散乱 (RXRS) を測定した。励起は Ti K 吸収端 (Ti $1s \rightarrow 4p$)で行い、 Ti $K\alpha$ 蛍光 (Ti $2p \rightarrow 1s$)付近のエネルギーの散乱光 を測定した。サンプルは、シングルドメインの単結晶の (100)面を用いていおり、c 軸方向に自発分極を持ってい る。測定は、高工研 P F のビームライン BL-7c 及び 15b に、X 線発光分光器 ESCARGOT を設置して測定した。

図1は、蛍光収量法で測定した BaTiO₃の Ti K 吸 収スペクトルである。励起光の電場方向が自発分極に平 行な場合(E//c)と垂直な場合(E//b)を示している。 およそ 4978 eV 以上の大きな構造がメインの吸収であり、 Ti $1s \rightarrow 4p$ 吸収に相当する。吸収端の弱い構造は、Ti 3dへの双極子遷移と四重極子遷移の重なりであると考えら れる [1]。これらの吸収スペクトルには、励起方向による 大きな違いが観測されている [2]。

図2は、図1の矢印で示された励起エネルギーで励 起したラマン散乱である。低エネルギー側の4本のピー クは、Ti 3dの構造を反映していると考えられる[3]。高 エネルギーの2本のピークは、Ti $K\alpha$ 蛍光に繋がるもの で、4p による構造であると考えられる。S で示される構 造は、エネルギー的にはTi L 吸収で観測される電荷移動 サテライトに一致するが、確かなアサインメントは出来 ていない。これらのスペクトルは、励起方向によってTi 3d の e_g 軌道の強度が変化している[3]。 e_g 軌道は、酸素 イオンの方向、つまり強誘電相転移のイオン変位の方向 に一致している。この結果は、かつて Cohen によって指 摘された BaTiO₃ の共有結合性[4] を顕著に示す結果であ

図 1: BaTiO₃のTi K 吸収スペクト ル。挿入は吸収端構造の拡大図。

図 2: BaTiO₃の共鳴ラマンスペクト ルの励起方位依存性。

る。講演では、BL2cで測定した、軟X線発光の結果と会わせて報告する。

[1] E.Beaurepaire, et al. Europhys. Lett. 22 (1993).
[2] 手塚他、2006 年秋季大会 25aPS-16.
[3] 手塚他、第 61 回年次大会 28aPS-13、2006 年秋季大会 25aPS-15.
[4] R.E. Cohen, Nature, 358, 136 (1992)