粉末回折ユーザーグループ(2008年 PF シンポジウムポスター発表要旨

室温での Li_xFePO4 固溶相(0.9 < x < 1)の単離

(東工大院総理工,名工大*) 小林玄器,西村真一,山田淳夫,菅野了次,八島正知,井田隆*

<u>緒言</u>:大型リチウムイオン二次電池実現に向けて、有望な次世代正極材料である LiFePO₄の充放 電機構について、我々は FePO₄/LiFePO₄への相分離を伴う単純な二相反応ではなく、両端組成近 傍に固溶領域($0 < x < \alpha$, $1-\beta < x < 1$)を有する機構を提唱している。しかし、対応する固溶相の単 離に成功した例はこれまでにない。本研究では、粒子サイズを 40 - 250 nm の範囲内で制御可能 な合成法を確立した上で、分離 – 固溶転移組成 β 付近に Li 量を調整することで、固溶相($1-\beta < x < 1$)の出現過程の追跡とその単離を試みた。

<u>実験方法</u>: LiFePO₄の合成は固相法により行い、粒子サイズは原料の粉砕・混合条件と焼成温度・ 雰囲気を変えることで制御した。化学的酸化還元反応によりLi量を所定の組成(x = 0, 0.6, 0.9)に 調整した後、高感度で高分解能なデータが得られる PF BL-4B₂において放射光 X 線回折測定を 行い、実験室系では捉えきれない微弱なピークを検出するとともに、格子定数を精密化した。 <u>結果・考察</u>: Li_{\alpha}FePO₄への二相分離状態である中間組成($\alpha < x < 1$ - β)における各相 の格子定数の値は、微粒子化に伴い両端組成(x = 0, 1)の値から大きく逸脱し、40 nm の試料では Vegard 則から算出した固溶限界値 β が 0.1 以上となった。これに対応する形で、x = 0.9 に調整し た試料においては、250 nm、80 nm の試料で二相分離状態に対応する Li_aFePO₄ 残存相に相当す る微弱な回折ピークが観測されたのに対し、40 nm の試料では、Li_{0.9}FePO₄ に相当するピークの みが観測された(Fig. 1)。さらに、単離された固溶相 Li_{0.9}FePO₄ と LiFePO₄の X 線回折図形を比較 すると、Li 組成の違いに対応する明確なピークシフトが確認された(Fig. 2)。これらの結果は固 溶領域が寄与する充放電機構を支持するものである。

Fig. 1 Synchrotron X-ray profiles of $Li_{0.9}FePO_4$ with different particle size.

Fig. 2 Synchrotron X-ray profiles of Li_x FePO₄ (40 nm) with different lithium content (x = 0.9, 1.0).