Si クラスレート Ba₈Si₄₆の生成過程のその場観察

物質・材料研究機構 今井基晴

1. はじめに

化学式 A_8X_{46} で記述される I 型 Si クラスレート化合物は特徴的な結晶構造を持つ。この化合物において Si 原子 は Si₂₀ 十二面体ケージ、Si₂₄ 十四面体ケージを構成しており、それぞれのケージは面を共有することで繋がって いる。A 原子は多面体ケージの中心に位置している。Si₂₀ 多面体ケージ及び Si₂₄ 多面体ケージの形がフラーレン C₂₀、C₂₄ と同じであることから、フラーレン化合物での超伝導物質発見以来、Si クラスレート化合物における超伝 導物質探索が行われてきた。広島大学山中教授グループは、高温真空中で Na₂BaSi₄ から Na 原子を除去することに より超伝導を示す(Na,Ba)₈Si₄₆ の合成に成功した[1]。更に山中グループは、高温高圧下(1073-1673K、3-5GPa) で BaSi₂ と Si の混合物から超伝導 Si クラスレート Ba₈Si₄₆ の合成に成功した[2,3]。一方、この温度圧力範囲で、 原料のひとつである BaSi₂は斜方晶相、三方晶相、立方晶相、BaSi₂IV 相の 4 つの相を持つ[4]。そこで講演者は、 Ba₈Si₄₆ が生成されるときに BaSi₂のどの相が Si と反応して Si クラスレートを形成するのかということに興味を 持った。

本研究では、BaSi₂とSiの混合物からSiクラスレートBa₈Si₄₆が高温・高圧下でどのように生成されるかを、X 線回折を用いてその場観察した。

2. 実験方法

マルチアンビル型高圧発生装置 MAX80 を用いた高温高圧下でのその場観察は、高エネルギー加速器研究機構 PF-ARNE5C ビームラインで行った。X 線回折はエネルギー分散法で行った。モル比 8:30 の BaSi2 と Si の混合物を アーク溶融した試料を用いた。試料は BN カプセルに充填した。温度はアルメル - クロメル熱電対を用いて、圧力 は NaCI の格子定数から見積もった。試料は室温で 4.3GPa まで加圧した後、加熱を行った。この過程で X 線回折 によるその場観察を行った。

3. 結果と考察

図 1 に 8BaSi₂+30Si を 4.3GPa で 1273K まで加熱したときの X 線回折パターンを示す。室温では、試料は斜方晶 BaSi₂と Si の 混合物である。加熱をしていくと、770K で BaSi₂のみが斜方晶 - 三方晶転移を、更に 870K で BaSi₂のみが三方晶 - 立方晶転移 を引き起こす。更に加熱をしていくと、970K で立方晶 BaSi₂が Si と反応し Si クラスレート Ba₈Si₄₆が現れる。Ba₈Si₄₆の生成は 1070K で完了した。

Fig. 1 X-ray diffraction patterns of $8BaSi_2+30Si$ observed during heating up to 1270 K at about 4.3 GPa. The symbols "o", "t", "c" and "cl" represent reflections from the orthorhombic $BaSi_2$, the trigonal $BaSi_2$, the cubic $BaSi_2$, and the Si clathrate Ba_8Si_{46} .

参考文献

- [1] H. Kawaji et al., Phys. Rev. Lett. 74, 1427 (1995).
- [2] S. Yamanaka et al., Inorg. Chem. 39, 56 (2000).
- [3] H. Fukuoka et al., J. Phys. Chem. Solids 65, 333 (2004).
- [4] M. Imai et al., Phys. Rev. B58, 11922 (1998).