角度分解光電子分光による三層系高温超伝導体 $Bi_2Sr_2Ca_2Cu_3O_{10+\delta}$ のギャップの異方性,キンクの観測

出田真一郎¹, 高島憲一¹, 橋本信¹, 吉田鉄平¹, 藤森淳¹ 久保田正人², 小野寛太², 小嶋健児¹, 内田慎一¹ ¹東大理, ²高工研

Bi 系高温超伝導体には、 CuO_2 面の枚数が異なる $Bi_2Sr_2CuO_{6+\delta}$ (Bi2201)、 $Bi_2Sr_2CaCu_2O_{8+\delta}$ (Bi2212)、 $Bi_2Sr_2Ca_2Cu_3O_{10+\delta}$ (Bi2223)がある。 CuO_2 面の増加に伴い、臨界温度(T_c)が上昇することが知られており、中でも三層系 Bi2223 は、Bi 系高温超伝導体の中で最も高い T_c (最適ドープで 110 K) を示す非常に興味深い物質である。しかしながら、単結晶作製が難しいため、他の高温超伝導体に比べ研究報告が極めて少なく、電子構造についての情報は十分に得られていない[1, 2]。角度分解光電子分光(ARPES)による研究において、Bi2212 では 2 枚の CuO_2 面に対応したバンドの分裂が観測され[3]、超伝導ギャップと擬ギャップの関係[4, 5] や電子-ボソンモードの結合によって生じるキンクの起源などの議論が盛んに行われているが[6, 7]、 CuO_2 面間に働く相互作用と超伝導特性の微視的起源の理解は未だ十分でない。

本研究では、良質な最適ドープ Bi2223 の単結晶($T_c=110$ K)を用いて観測された ARPES スペクトルからギャップの異方性やキンク構造について議論する。

References

- [1] D. L. Feng et al., Phys. Rev. Lett. 88, 107001 (2002).
- [2] T. Sato et al., Phys. Rev. Lett. 91, 157003 (2003).
- [3] D.L. Feng et al., Phys. Rev. Lett, 86, 5550 (2001)
- [4] K. Tanaka et al., Science. 314, 1910 (2006).
- [5] W. S. Lee et al., Nature. 450, 81 (2007).
- [6] T. Cuk., Phys. Rev. Lett. 93, 117003 (2004).
- [7] T. Sato et al., JPSJ, 76, 103707 (2007).