Structure of WSi_n cage clusters probed by x-ray absorption fine structure spectra H. Oyanagi¹, Z. H. Sun¹, N. Uchida², T. Miyazaki³ and T. Kanayama² *e-mail: h.oyanagi@aist.go.jp Transition metal -encapsulated clusters are expected to be able to stabilize Si cage structures which are promising building blocks for the fabrication of various nanooptoelectronics devices combined EXAFS and XANES to study the geometric arrangement of W around Si atoms in a series of WSi_n cluster samples. The **EXAFS** results show similar radial distributions around W atoms in the WSi_n samples and amorphous W-Si alloy, but the spatial distributions in the WSi_n clusters and amorphous W-Si alloy quite different as detailed multiple-scattering revealed by XANES analysis. It is found that WSi₈ and WSi₁₂ cage clusters coexists in the asdeposited WSi_n samples. The average fraction of WSi₁₂ cluster is evaluated to be 25%, 43%, and 45% for samples deposited in a SiH₄ pressure of 5, 0.5, and 0.1 Pa, respectively. ## References [1] H. Hiura, T. Miyazaki and T. Kanayama: *Phys. Rev. Lett.* **86**, 1733-1736 (2001). Fig. 1 The normalized XANES spectra of WSi_n samples, $c\text{-}WSi_2$ and $a\text{-}W_xSi_{1-x}$ references. Much stronger white-line peaks for the WSi_n samples than those of $c\text{-}WSi_2$ and $a\text{-}W_xSi_{1-x}$ can be observed. ¹National Institute of Advanced Industrial Science and Technology, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan ² Nanodevice Innovation Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan ³Quantum Modeling Group, Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan