Low-temperature lattice anomaly in LaFeAsO$_{0.93}$F$_{0.07}$ probed by x-ray absorption spectroscopy: Evidence for strong electron-lattice interaction

C. J. Zhang1, H. Oyanagi$^{1, *}$, Z. H. Sun1, Y. Kamihara2, and H. Hosono2.

1National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan.
2Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.

*e-mail: h.oyanagi@aist.go.jp

The recently discovered high temperature superconductivity (HTSC) in fluorine doped LaFeAsO have stirred new interest in the research of high-T_c superconductors [1], outside of the cuprate family. The first and most important question about the LaFeAsO$_x$-based new superconducting system is whether it has similar mechanism for superconductivity with cuprate superconductors or not. In order to find the appropriate mechanism, lattice effects can provide key information. In this work we present results from Fe and As K edge EXAFS measurements indicating that local Fe-As lattice fluctuation occurs well above T_c. Similar to that in cuprates, this local lattice fluctuation is closely correlated with the onset of superconducting transition, indicating that the local lattice fluctuation is involved in the superconducting coherence in both systems [2].

In Fig. 1 we plot the temperature dependence of the mean-square relative displacement for the nearest neighboring Fe-As shell derived from both Fe K edge EXAFS (labeled as $\sigma_{\text{Fe-As}}^2$) and As K edge EXAFS (labeled as $\sigma_{\text{As-Fe}}^2$) for the LaFeAsO$_{1-x}$F$_x$ (x=0.07) sample together with that of the undoped LaFeAsO sample. Significantly, an anomalous upturn of $\sigma_{\text{Fe-As}}^2$ appears at $T<70$ K. This anomaly is accompanied by a sharp drop at the temperature where the onset of superconducting transition occurs ($T_c\text{ onset}=29$ K). Similar anomalous behavior was previously found in La$_{2-x}$Sr$_x$CuO$_4$ samples where an upturn of $\sigma_{\text{Cu-O}}$ (mean-square relative displacement of the in-plane Cu-O bond) occurs at $T<80$ K which is also accompanied by a sharp decrease at $T_c\text{ onset}$. In order to clearly see the low temperature local lattice instability and its relation to the $T_c\text{ onset}$ value, we plot in the inset of Fig. 1 the normalized temperature ($T/T_c\text{ onset}$) dependence of the mean-square relative displacements for both LaFeAsO$_{0.93}$F$_{0.07}$ and La$_{2}$Sr$_{2}$CuO$_4$ samples. It can be seen that a sharp decrease in the mean-square relative displacement occurs exactly at $T_c\text{ onset}$ in both systems. This result indicates that the local lattice instability might play an important role in the superconducting coherence in both systems.

The authors express their greatest thanks to H. Koizumi for inspiring discussions. The EXAFS experiments were conducted under the proposal 2007G071 at Photon Factory.

References