NEMO (NF- κ B essntial modulator) selectively binds linear ubiquitin chains in NF- κ B activation

Simin Rahighi^{1,2}, Fumiyo Ikeda^{3,}, Masato Kawasaki^{1,2}, Masato Akutsu^{1,2,4}, Nobuhiro Suzuki¹, Ryuichi Kato^{1,2}, Tobias Kensche³, Tamami Uejima¹, Stuart Bloor⁴, David Komander⁴, Felix Randow⁴, Soichi Wakatsuki^{1,2} and Ivan Dikic³

¹ Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

² Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
³ Institute of Biochemistry II and Cluster of Excellence Frankfurt, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
⁴MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK

Members of the nuclear factor- κ B (NF- κ B) family are key transcription factors that regulate gene expression during critical cellular processes including inflammation, cell proliferation and apoptosis. In the inactive state binding to inhibitory- κ B (I κ B) molecules sequesters NF- κ B transcription factors in the cytosol. Activation is tightly regulated by a signaling network which integrates stimuli from various sources and requires binding of NF- κ B essential modulator (NEMO) to ubiquitylated substrates. Here we report that UBAN (Ubiquitin Binding in ABIN and NEMO) motif of NEMO preferentially binds to linear (head-to-tail) ubiquitin chains. Crystal structures of the UBAN motif alone and in complex with linear diubiquitin chains indicate that UBAN motif forms a parallel coiledcoil homo-dimer which binds to one linear diubiquitin on either side. The UBAN dimer contacts canonical II44 surface on distal and a novel surface on proximal ubiquitins which provide specificity for linear ubiquitin chain binding. Residues of NEMO involved in interactions with linear ubiquitin chains are essential for NF- κ B activation by TNF- α and other agonists, which explains the detrimental effect of NEMO mutations in patients suffering from X-linked ectodermal dysplasia and immunodeficiency.