サーモトロピックキュービック液晶化合物の

キュービックーキュービック相転移

岐阜大工 森 博幸・坂尻浩一・〇沓水祥一、筑波大院数理物質 齋藤一弥、名工大院工 山本勝宏

サーモトロピック(温度転移型)液晶化合物である BABH-n(nは アルキル鎖中の炭素数;化学構造は右参照)は、水素結合相互作用と アルキル鎖・芳香環間のミクロ相分離により超分子的に自己組織化し

て、空間群の異なる2種類の双連結型(*Ia3d*G型と*Im3m*-PP型)のキュービック(Cub)相を形成 する [1-5]。特に、BABH-13, 15, 16 は温度変化にともない *Ia3d*G型と*Im3m*-PP型の Cub 相を発現 し、ある温度で Cub-Cub 相転移を示す(Fig. 1の相図参照) [3]。温度変化によって引き起こされる Cub-Cub 相転移の例は珍しく、そのキネティクスやメカニズムは全く解明されていない。本研究では、

BABH-*n*の Cub-Cub 相転移に対して、温度ジャンプによる 時分割小角 X 線散乱測定をおこなった。

時分割小角 X 線散乱測定は、つくば市高エネルギー加速器 研究機構放射光研究施設のビームライン B L-15A でおこな った。温度制御は Mettler 製加熱炉 FP82HT でおこなった。 その際、試料は中央に直径 5 mm の穴を開けた自作の Al 板 (20×14×1 mm)に溶融させながら詰め、その両側をカプト ン膜で封じ、加熱炉にセットした。低温側の Cub 相が安定に 存在しうる温度で 10 分間保持し、その Cub 相のみの状態で あることを確認した後、急昇温させ高温側の Cub 相の出現を 時分割小角 X 線散乱測定によりモニターした。

温度ジャンプの結果を Table 1 にまとめた。同じ温度ジャ ンプ幅 (*T*end-*T*start) で比較するとき、BABH-16 の *Im*3*m*-PP 型から *Ia*3*d*-G 型への相転移は BABH-13 の *Ia*3*d*-G 型から

Im3m-PP 型への相転移より速い ことがわかった。また、各温度ジ ャンプにおいて、*kla3d* と *klm3m* が ほぼ等しい値であることから、 *Ia3d*-G 型の Cub 相のドメインが 順次、*Im3m*-PP 型の Cub 相のド メインへ移行していることがわか る。同じサンプル、同じ温度ジャ ンプ幅で再度実験をおこなったと ころ、再現良い結果が得られた。 詳細な検討結果は当日発表する。

Fig. 1. Phase diagram of BABH-*n*.

Table 1. Effect of end temperature on two rate constants $(k_{Ia3d} \text{ and } k_{Im3m})$. Temperature jumps were carried out between the indicated temperatures $(T_{\text{start}} \text{ and } T_{\text{end}})$.

n	T _{start} (K)	T_{end} (K)	T_{end} - T_{start} (K)	<i>k _{la 3d}</i> (s⁻¹)	<i>k_{Im 3m}</i> (s ⁻¹)
13	407.8	413.6	5.8	0.0023	0.0040
13	407.8	414.5	6.7	0.010	0.012
13	407.8	415.5	7.7	0.022	0.039
13	407.8	416.5	8.7	0.062	0.078
13	407.8	418.4	10.6	0.17	0.17
16	409.0	412.9	3.9	0.039	0.036
16	409.0	413.9	4.9	0.057	0.071
16	409.0	414.8	5.8	0.088	0.065
16	409.0	415.9	6.9	0.15	0.14
16	409.0	416.8	7.8	0.27	0.26

参考文献

[1] H. Mori, S. Kutsumizu, T. Ito, M. Fukatami, K. Saito, K. Sakajiri, K. Moriya, Chem. Lett., 35, 362(2006).

- [2] S. Kutsumizu, H. Mori, M. Fukatami, K. Saito, J. Appl. Crystallogr., 40, s279(2007).
- [3] S. Kutsumizu, H. Mori, M. Fukatami, S. Naito, K. Sakajiri, K. Saito, Chem. Mater., 20, 3675(2008).
- [4] K. Saito, Y. Yamamura, and S. Kutsumizu, J. Phys. Soc. Jpn., 77, 093601(2008).
- [5] K. Ozawa, Y. Yamamura, S. Yasuzuka, H. Mori, S. Kutsumizu, K. Saito, J. Phys. Chem. B, 112, 12179(2008).