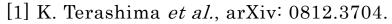
Three-dimensional electronic structure of BaFe₂As₂


observed by angle-resolved photoemission spectroscopy

University of Tokyo^A, JST-TRIP^B, KEK-PF^C, AIST^D.

W. Malaeb^A, T. Yoshida^{A,B}, A. Fujimori^A, M. Kubota^C, K. Ono^C, K. Kihou^D, P.M. Shirage^D, H. Kito^D, A. Iyo^{B,D}, H. Eisaki^{B,D}, Y. Nakajima^A, T. Tamegai^{A,B}.

In order to understand the occurrence of SC in Fe-pnictides, many aspects of their electronic structure are still to be uncovered and angle-resolved photoemission spectroscopy (ARPES) is a powerful technique for this purpose. We have performed ARPES measurements on the mother compound $BaFe_2As_2$ (Ba122) as well as the Co-doped superconducting compound $Ba(Fe,Co)_2As_2$ to determine the Fermi surface topology and band dispersion near the Fermi level. In both compounds, we have observed a clear hole pocket near the Γ point and electron pockets near the M point which is consistent with previous ARPES reports on these compounds [1]. Co-doping which

induces electrons into this system has resulted in a shrinkage of the hole pocket around Γ point and an enhancement of the electron pocket around M point. Moreover, we have observed clear three dimensionality (strong k_z dispersion) in the momentum space in both compounds as shown in Fig.1. These results agree with what was predicted by band calculations [2]. Based on these results, we shall discuss the electronic structure of the mother compound Ba122 and the effect of electron doping in this system.

[2] D. J. Singh, PRB, 78 (2008) 094511.

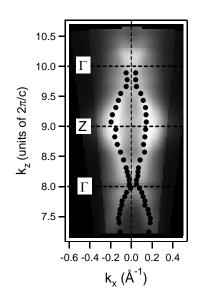


Fig. 1. Fermi surface image of $BaFe_2As_2$ in the k_x - k_z plane obtained from $h\nu$ -dependent ARPES data.