α -Helical burst on the folding pathway of FHA domains from

Rad53 and Ki67

Yoshitaka Matsumura¹, Masaji Shinjo¹, Anjali Mahajan², Ming-Daw Tsai³ and Hiroshi Kihara¹

¹Department of Physics, Kansai Medical University, 18-89 Uyama-Higashi, Hirakata 573-1136, Japan

²Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA

³Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan

We have been studying folding of β proteins (src SH3, its mutant A45G, bovine and equine β -lactoglobulin). They showed α -helix-rich intermediates at the earliest stage on the folding pathways.

We have a simple question: do other β proteins also form α -helical intermediates on their folding pathway? So, we have studied other β protein, FHA domains.

We did refolding experiments by cryo-stopped-flow CD. The result was that FHA1 domain of Rad53 showed three phases (I, II and III) at -20°C. The phase I is the burst phase with the increase of α -helix. The phase II is observable (0.25 s-1) phase, in which α -helix decreased. The phase III is slower than 30 min. When temperature increased to -15°C, the phase II became too fast to be detected. Actually, the CD value of the burst phase of -15°C is similar to the CD value of the last level of the phase II of -20°C. Insteads, another phase (α -helix decrease) appeared at -15°C. Judging from its CD value, it seems that the observable phase of -15°C corresponds to the phase III of -20°C. We also measured time-resolved SAXS at -20°C. From the Rg values, it is thought that α -helical burst intermediates at -15°C and -20°C (phase I and phase II) were compact.

Besides, we investigated another refolding, Ki67 FHA domain by cryo-stopped-flow CD and SAXS. This protein also showed α -helical burst and it is thought that the intermediate was also compact.

The present study demonstrates that folding landscape of these β proteins, including FHA domains, have at least main barrier(s). It is taken into consideration that the barrier(s) is (are) mainly by conformation entropy driven.