蛍光X線ホログラフィーによる ガンマ線検出素子 $\mathrm{Cd}_{0.96} \mathrm{Zn}_{0.04} \mathrm{Te}$ の局所構造解析

八方直久，藤原真，田中公一，細川伸也 ${ }^{A}$ ，林好— ${ }^{B}$広島市大•情報，${ }^{A}$ 広島工大•工，${ }^{B}$ 東北大•金研

II－VI 族化合物半導体 $\mathrm{Cd}_{1-X} \mathrm{n}_{x}$ Te は，高いガンマ線阻止能力を持つことから，近年，新たしいタイプのガンマ線•X 線用半導体検出素子として期待されてい る。この物質では， Zn 濃度を高くすることが熱雑音の低減に有効であると考え られるが，残念ながら x が 0.1 以下しか良質な単結晶を得ることができない。一方，同様な閃亜鉛鉱型の3元系混晶である希薄磁性半導体 $\mathrm{Cd}_{1-x} \mathrm{Mn}_{x} \mathrm{Te}$ や $\mathrm{Zn}_{1-x} \mathrm{Mn}_{x} \mathrm{Te}$ では， x が $0.7 \sim 0.8$ ぐらいまでの高濃度の単結晶の作製が可能で ある。我々はこれまでに両物質に対して蛍光X線ホログラフィー実験を行い，広範囲の局所構造を解析した。その結果，第5結合付近までの配置が歪むこ とで長距離秩序が保たれていることが明らかになった。［1，2］
本研究では， $\mathrm{Cd}_{1-x} Z \mathrm{n}_{x} \mathrm{Te}$ の格子歪みの様子を明らかにするために $\mathrm{Zn} K \alpha$ 蛍光X線ホログラフィーを測定し， Zn 周辺の局所構造解析を行った。KEK－PF， BL6C で測定した入射X線のエネルギーが 11.5 keV のホログラムを図1に示す。試料の結晶性が良いので鮮明なX線定在波線が見られる。10．0～14．0 keV の範囲を 0.5 keV 刻みで測定した9つのホログラムより再生した $\mathrm{Cd}_{1-x} Z \mathrm{n}_{\star} \mathrm{Te}$ の （110）面の原子像を図2に示す。閃亜鉛鉱型の原子配列が観測されているが，希薄磁性半導体の結果とは異なり，第1配位の Te の像のみが極めて弱くなっ ていることが分かった。このような歪みの局所的な範囲への限定が，高 Zn 濃度の単結晶化を阻害していると思われる。
この研究は，PF／BL6C（課題番号 ：2007G514 および 2007G0573）において行 われた。

図1 11.5 keV のホログラム

図2 $\mathrm{Cd}_{1-x} \mathrm{Zn}_{x} \mathrm{Te}$ の（110）面の再生像
［1］N．Happo，et al．，J．Crystal Growth 311 （2009） 990.
［2］S．Hosokawa，et al．，Phys．Rev．B 80 （2009） 134123.

