PtRu ナノ粒子触媒の電気化学的挙動の in situ XAFS 解析 In situ XAFS analysis of electrochemical behavior of PtRu nanoparticle catalyst

景山悟¹、中川貴 ¹、清野智史¹、山本孝夫 ¹仁谷浩明 ²、 1 阪大院工、2 KEK-PF

【はじめに】PtRu ナノ粒子触媒は直接メタノール型燃料電池のアノード触媒として有望である。しかしながら、電池駆動時に PtRu ナノ粒子が電気化学的に劣化するため、高いメタノール酸化活性を長時間維持することが困難である。したがって、劣化しにくい PtRu 触媒を開発するためには、これらの駆動条件下での電気化学的な挙動を調査する必要がある。本研究では、電気化学的条件に模擬した燃料電池セルの in situ XAFS 測定により PtRu 触媒の構造変化を解析した。

【実験】触媒の作製にあたっては、貴金属の前駆体 H_2PtCl_6 と $RuCl_3$ 、並びにカーボン担体粒子 ($Vulcan\ XC-72R$ 、 $Cabot\ 社$)を超純水 ($18M\Omega \cdot cm$)に投入し、その溶液を電子線照射 (20kGy、10sec)した。照射後、試料を洗浄・乾燥しカーボン担持 PtRu 触媒粉末を得た。PF-AR ビームライン NW10A にて、多素子 SSD による $Pt-L_{II}$ 端と Ru-K端の蛍光 XAFS 測定を行った。カーボンペーパーに触媒粒子を塗布し、硫酸 ($1.5\ M$)+メタノール ($20\ vol.\%$)を含む溶液セル中で、これに電圧サイクル ($0.6-1.1\ V\ vs.\ NHE$ 、計 $50\ サイクル$ 、 $5\ mV/sec$)を印加した。電圧サイクルを 5、10、 $50\ サイクルと増やす度に、それぞれのサイクル数における <math>XANES$ スペクトルを測定した。

【結果と考察】測定した Ru-K端の XANES スペクトル(電圧サイクル印加前、5、10、50 サイクル後)を、参照試料 Ru metal と RuO_2 のものとともに図に示す。いずれの XANES スペクトルの形状も、メタルより RuO_2 のそれに近い形状を示した。Ru の電子状態が、サイクル数が増すごとに変化した。サイクル数が増すごとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。サイクル数が増するとに変化した。

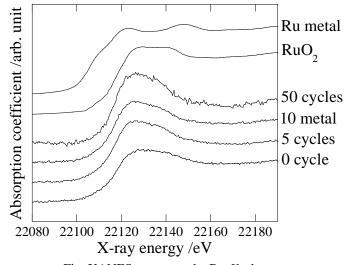


Fig. XANES spectra at the Ru-K edge

総合し、PtRu ナノ粒子触媒の電気化学的挙動について議論する。