Study of valence state and magnetic property of Fe in Fe-doped ZnO thin films

V. K. Verma¹, T. Kadono¹, V. R. Singh¹, K. Ishigami¹, Y. Yamazaki¹, G. Shibata¹, A. Fujimori¹, T. Koide², Sourav Chattopadhyay³ and T. K. Nath³

Univ. of Tokyo¹, KEK-PF², IIT Kharagpur³

Diluted magnetic semiconductors (DMSs) based on ZnO have attracted considerable attention in the past years, because some transition metal (TM)-doped ZnO DMSs exhibit ferromagnetism at room temperature (RT) [1]. Recently, Chang *et al.* [2] observed room temperature ferromagnetism in Co and Al co-doped ZnO.

In the present work, 5% Fe-doped and 5% Fe, 1% AI co-doped ZnO epitaxial thin films were fabricated on (0001)- α Al₂O₃ (sapphire) substrates by pulsed laser deposition technique. The film thicknesses were about 2000 Å. Here, we report on Fe $L_{2,3}$ x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) experiments of $Zn_{0.95}Fe_{0.05}O$ and $Zn_{0.94}Fe_{0.05}Al_{0.01}O$ thin films to study the electronic structure and the magnetic properties of Fe ions embedded in the lattice of ZnO thin films that show ferromagnetism at room temperature. The X-ray diffraction patterns clearly showed that there was no metallic Fe cluster. From the line shape of Fe $L_{2,3}$ -edge XAS in both films, it is confirmed that Fe ions are in both the 3+ and 2+ states while the Fe^{2+}/Fe^{3+} ratio increases in the $Zn_{0.94}Fe_{0.05}AI_{0.01}O$ thin film compared to $Zn_{0.95}Fe_{0.05}O$ and the ferromagnetism comes from both Fe^{3+} and Fe^{2+} ions. In the $Zn_{0.94}Fe_{0.05}AI_{0.01}O$ thin film, the magnetization decreases to $Zn_{0.95}Fe_{0.05}O$ although the conductivity increases, compared indicating that ferromagnetism is not carrier induced.

[1] T. Dietl *et al.*, Science 287, 1019 (2000).
[2] G. S. Chang *et al.*, J. Phys.: Condens. Matter 21, 056002 (2009).