Interfacial Electronic Structures of Polar and Nonpolar AIN/ZnO Heterojunctions Determined by Synchrotron Radiation Photoemission Spectroscopy Jiangwei Liu¹, Atsushi Kobayashi¹, Kohei Ueno², Satoshi Toyoda ^{1,3,4}, Akira Kikuchi¹, Jitsuo Ohta², Hiroshi Fujioka^{2,3}, Hiroshi Kumigashira^{1,3,4}, and Masaharu Oshima^{1,3,4} ¹Department of Applied Chemistry, The University of Tokyo ²Institute of Industrial Science, The University of Tokyo ³JST-CREST ⁴Synchrotron Radiation Research Organization, The University of Tokyo Polar (c-plane) and nonpolar (a-plane) AlN films have been grown on single crystal ZnO substrates by pulsed laser deposition at room temperature. The interfacial electronic structures of polar and nonpolar AlN/ZnO heterojunctions have been characterized by synchrotron radiation photoemission spectroscopy. Based on the binding energies of core-levels and valence band maximum values, the valence band offsets have been found to be 0.4 ± 0.1 and $0.1 \pm 0.1 \, \text{eV}$ for the c-plane and a-plane AlN/ZnO heterojunctions, respectively. Both heterojunctions show type-II band configurations with conduction band offsets of 3.0 ± 0.1 and 2.7 ± 0.1 eV, respectively. The potential on the ZnO side bends downward toward the interface for the nonpolar AlN/ZnO heterojunction. However, that bends upward toward the interface for the polar AlN/ZnO heterojunction. This phenomenon is explained well by the effect of spontaneous polarization in AlN and ZnO. ## References - 1. K. Ueno, A. Kobayashi, J. Ohta, and H. Fujioka, Jpn. J. Appl. Phys. **45**, L1139 (2006). - 2. K. Ueno, A. Kobayashi, J. Ohta, and H. Fujioka, Appl. Phys. Lett. **90**, 141908 (2007). - 3. J. W. Liu, A. Kobayashi, S. Toyoda, H. Kamada, A. Kikuchi, J. Ohta, H. Fujioka, H. Kumigashira, and M. Oshima, Phys. Status Solidi B, available online. - 4. J. W. Liu, A. Kobayashi, K. Ueno, S. Toyoda, A. Kikuchi, J. Ohta, H. Fujioka, H. Kumigashira, and M. Oshima, Appl. Phys. Lett. **97**, 252111 (2010).