BL-15C

蜃気楼干渉縞による歪勾配の考察 Mirage fringes as a function of bending strain

Jongsukswat Sukswat¹、金松喜信¹、遠山将彦¹、平野健二¹、深町共榮¹、 根岸利一郎¹、巨 東英¹、下条雅幸¹、平野馨一²、川村隆明³ 埼玉工業大学¹、KEK-PF²、山梨大学³

Siの平行平板結晶をカンチレバー(Fig. 1)で曲げた時の X 線蜃気楼縞を観 測し、それによる

歪勾配を表すパラメータβを求めた

結果を報告する。

歪勾配 をもつ結晶では、Fig. 2 に示すように屈折ビームの軌跡が双曲線となるため、 Bragg ケースでは屈折ビームは入射面に舞い戻り回折して結晶表面から出て くる。これを蜃気楼回折と呼ぶ。また異常透過する入射角では、屈折ビームが 球面波になることから、パスの異なる屈折ビーム間で干渉が生じ、蜃気楼縞 を作る。回折方向のセクショントポグラフを撮影した結果を Fig. 3 に示す。ここ でP_bは一次回折ビーム、P_b'は多重 Bragg-Laue(MBL)干渉縞である。P_bとP_b' の間に見えるのが蜃気楼縞である。回折実験は Si 220 反射を用いて KEK-PF の BL15C で行った(X 線の波長は 0.1117 nm)。β はカンチレバーの変位 D に 比例する。今回は蜃気楼縞の周期から β を求めて[1, 2]、 $\beta \propto D$ の関係を調 べた。その結果を Fig. 4 に示す。これから β はDに比例することが分かったが しかし、Dが非常に小さい時に残留応力があることが明らかとなった。ここで求 めたβは、歪の解析ばかりか、MBL 干渉縞の観測領域が再現できるので屈 折ビームのパスの解析にも有効である。

Fig. 3 実験結果。(a) Unbent 結晶, (b) Bent 結晶。

^[1] T. Fukamachi et al.: Acta Cryst. A66, 421-426, (2010). [2] S. Jongsukswat et al.: XTOP 2010 ABSTRACT p.57.