V₂O₃ナノ結晶の金属絶縁体転移

Metal-insulator transition in V₂O₃ nanocrystals

石渡洋一, 白石達也, 糸山真央, 今村真幸^A, 高橋和敏^A, 鎌田雅夫^A, 木田 徹也^B, 石井啓文^C, 手塚泰久^D,南任真史^E, 石橋幸治^E 佐賀大理工, 佐賀大シンクロ^A, 九大院総理工^B, NSRRC^C, 弘前大院理工^D, 理研基幹研^E

V₂O₃ ナノ結晶における金属絶縁体転 移(MIT)とドーピングの関係を理解す ることを目的に、Cr と Ti をそれぞれ 1% ドープした V_2O_3 ナノ結晶を合成した。図 1にCrドープナノ結晶のTEM 写真を示 す。図2はBL2Cで測定した酸素 1s 励起 軟X線吸収スペクトルである。Cr ドープ 試料のバンド幅はノンドープ試料に比べ て狭くなり、温度の変化によって吸収端 が約 0.2 eV 程シフトする。これは Cr ド ープナノ結晶における MIT の発現を示し ている [1]。図3は Ti ドープナノ結晶の 光電子スペクトルである。180Kと80K で明瞭な MIT が示される。

0

Binding Energy (eV)

[1] Y. Ishiwata et al., Appl. Phys. Lett. 100, 043103 (2012).