Fe₃O₄ナノ結晶の金属絶縁体転移 Metal-insulator transition in Fe₃O₄ nanocrystals

大久保文生, 伊藤直樹, 石渡洋一, 今村真幸^A, 高橋和敏^A, 鎌田雅夫^A, 木田徹也^B, 石井啓文^C, 手塚泰久^D,南任真史^E, 石橋幸治^E 佐賀大理工, 佐賀大シンクロ^A, 九大院総理工^B, NSRRC^C, 弘前大院理工^D, 理研基幹研^E

Fe₃O₄の金属絶縁体転移(MIT)と、 電荷秩序、軌道秩序、さらには構造相転 移の関わりについて議論が続いている。 本研究では図1に示すFe₃O₄ナノ結晶を 新規に合成して、その MIT を調べること を行った。図2はFe₃O₄ナノ結晶の光電子 スペクトルである。MIT 前後で 400 meV にも及ぶ巨大なシフトが観測された。こ の値はバルクのシフト量となる 50 meV を大きく上回る。一方、図3に示すBL2C で測定した Fe₃O₄ナノ結晶の XAS スペク トルでは、MIT 前後におけるシフトの大 きさが僅かに 30 meV 程度となった。この ことは、Fe₃O₄の MIT におけるバンドシフ トが選択的に起きることを示している。

図 1

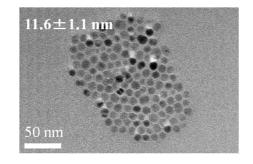


図 2

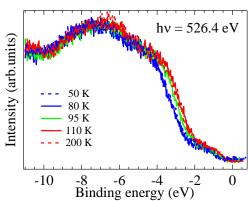
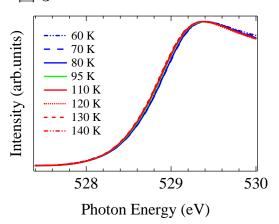



図 3

