BL-8A, 8B

Ba₄Ru_{3-x}Ir_xO₁₀の物性 Physical properties in Ba₄Ru_{3-x}Ir_xO₁₀

五十嵐太一¹, 鈴木貴博¹, 高橋涼平¹, 浅井晋一郎¹, 岡崎竜二¹, 安井幸夫¹, 寺崎一郎¹, 小林賢介², 熊井玲児², 中尾裕則², 村上洋一² 1 名大理. 2 KEK-PF

 $Ba_4Ru_3O_{10}$ は、3個の RuO₆八面体が面共有で結合した Ru₃O₁₂ 三量体を内包 する。この物質の結晶構造を図1に示す。Ru₃O₁₂の三量体は中心の1つのサ イトと端の2つのサイトに非等価な Ru イオンを持ち、頂点共有で他の Ru₃O₁₂ と結合する事で二次元平面の広がりを持つ。この物質は先行研究により、輸 送係数と磁化率の測定及び中性子回折実験がなされており^[1]、 T_N = 105 K 付 近で反強磁性転移温度を示し、転移と共に輸送現象においてもエネルギーギ ャップが開く事が確認されている。この転移は構造相転移を伴わないため、体 積変化を伴ってモット転移を示す 3d 遷移金属酸化物とは対照的である。また 磁気転移とエネルギーギャップの開きが同時に起こる微視的起源は解明され ていないため、非常に興味が持たれる。

そこで我々は Ru⁴⁺を Ir⁴⁺で置換した Ba₄Ru₃₋₄Ir_xO₁₀(0 $\leq x \leq 1.8$)の多結晶試料 を作製し、5 K から 300 K における磁化率、電気抵抗率、及びゼーベック係数 の測定を行った。これらの測定から決定した磁気相図を図 2 に示す。x < 1.0の試料からは T_N が確認され、x=1 に向かって直線的に減少している。これは Ru₃O₁₂ 三量体のうちの 1 サイトの置換によってこの系の磁気転移が消失する 事を示唆している。また、この系で Ir⁴⁺が Ru⁴⁺の非等価な 2 サイトのうちどちら のサイトから置換するかを確かめるため、放射光を用いた X 線回折実験を行 った。その結果 Ir⁴⁺はどちらのサイトも一様に置換する事が示唆された。 [1]Y. Klein *et al.*, Phys. Rev. B 84 (2011) 054439.

図 1:Ba₄Ru₃O₁₀の結晶構造

図 2:転移温度の置換量依存性のグラフ