マルチフェロイックMn酸化物薄膜の硬・軟X線回折 Hard and soft x-ray diffraction studies of multiferroic Mn-oxide thin films 東大工^A, Swiss Light Source^B, KEK-PF/CMRC^C, 理研CMRG^D 和達大樹^A, 松田太一^A, V. Scagnoli^B, S.-W. Huang^B, U. Staub^B, 岡本淳^C,

山崎裕一^C, 中尾裕則^C, 村上洋一^C, 中村優男^D, 川崎雅司^{A,D}, 十倉好紀^{A,D}

Rare-earth manganites with orthorhombically distorted perovskite structure, $RMnO_3$ with R being a trivalent rare-earth ion, have been subject to intensive studies since the multiferroic phases were found in some of these materials. Recently it has become possible to grow a single crystal film of orthorhombic YMnO₃ and DyMnO₃ by choosing (010) planes of YAlO₃ as a substrate [1]. We already succeeded in determining the magnetic structures of YMnO₃ thin films [2], and are continuing to study DyMnO₃ thin films. Figure 1 (a) shows the temperature dependence of the magnetic (0, ~0.5, 0) peak of the DyMnO₃ thin film. One can see temperature-dependent incommensurabilities, showing the existence of cycloidal magnetic structures. From the azimuthal-angle dependence, we conclude that the magnetic peak comes from the c-axis spin components due to the spin canting along c. From the peak intensity as a function of temperature in Fig. 1 (b), the peak appears around ~ 40 K, and the intensity increases around ~ 30 K, suggesting another phase transition.

Fig. 1: Temperature dependence of the magnetic (0, ~0.5, 0) peak of the DyMnO₃ thin film (a) and the peak intensity as a function of temperature (b). This work is supported by JSPS through its FIRST Program.
[1] M. Nakamura et al., Appl. Phys. Lett. 98, 082902 (2011).
[2] H. Wadati et al., Phys. Rev. Lett. 108, 047203 (2012).