有機分子-電極系の構造・電子状態と電荷移動ダイナミクス Structure, electronic states and charge-transfer dynamics of organic molecules on electrode surfaces

吉信淳¹,近藤寛²,坂本一之³,小澤健一⁴,櫻井岳暁⁵,長谷川幸雄¹,江口豊明²,間瀬一彦⁶ほか ¹東大物性研,²慶大理工,³千葉大院融合,⁴東工大院物質,⁵筑波大院数理,⁶KEK-PF

新しくリノベーションされた PF-BL13A が 2010 年 1 月 29 日にユーザー公開されてからほぼ 2 年が経過した. 途中,東日本大震災による中断があったが、高度化されたアンジュレーター放射光を利用して、高分解能内殻光電子分光、角度分解光電子分光、X 線吸収分光、Core-hole clock 分光、放射光励起 STM などの手法により、有機分子-電極界面の構造、電子状態および電荷移動ダイナミクスについて研究を推進している. エンドステーションとしては、(1) SES200/XAS+LEED サブチェンバー+有機蒸着&試料導入チェンバー:常設、(2) Phoibos100/LEED/XAS+有機蒸着ミニチェンバー:準常設、(3) 放射光 STM、などが串刺し配置で設置されており、雰囲気 XPS 装置も第 3 ポジションに設置することができる.

この1年間に2009S2-007では以下の様な系の研究が行われた. 詳細は各ポスターを参照されたい.

- TTF/Zn0: XPS, UPS による TTF 分子の吸着状態, 電子状態の研究 @SES200
- TNAP/Bi(001): XPS, UPS, NEXAFS による TNAP 分子の化学状態, 電荷移動の研究 @SES200
- 有機薄膜太陽電池系:金電極における種々の有機分子のエネルギー準位アラインメントの研究 @SES200
- 高分解能 XPS による CH₃S/Au (111) の構造解析 @Phoibos100
- TTF および F4-TCNQ/Pt(111): HR-XPS による化学状態の研究 @Phoibos100
- シクロヘキサン/Rh(111): HR-XPS による電子準位アラインメントの研究 @Phoibos100
- 放射光 STM による Ag/Si (111) (√3×√3) R30°表面の C60 の XAS 測定@放射光 STM

その他、グラフェン表面の酸化、Rh ドープ SrTiO₃における Rh の化学状態などの研究が行われた.

基板への有機蒸着が簡便に行える装置を備えた2つの放射光分光測定システムを構築し、HR-XPS、NEXAFS、価電子帯光電子分光の測定が定常的に行えるようになった。また共同研究により研究の対象が広がった。