触媒反応条件下 in-situ XAFS 測定

阪東 恭子

産業技術総合研究所 環境調和技術研究部門

In-situ XAFS Analysis under Catalytic Reaction Conditions

Kyoko K. BANDO

National Institute of Advanced Industrial Science and Technology

1.はじめに

固体触媒上で進行する気相または液相反応では、 反応物が触媒上に吸着した後、分解・結合形成等を 経て生成物と変化して行く。触媒反応の理解のため の第一歩は、反応物そのものが触媒上でどのように 変化して行くか捕らえることであるが、触媒反応が 反応物と触媒表面原子の化学反応である以上、触媒 反応について総合的に理解するためには、反応条件 下での触媒表面原子も含めた反応機構を理解する ことが不可欠となってくる。固体触媒上の活性サイ トは、XRD 等では正確に構造を捕らえることが難 しい数mm以下の非常に微細な粒子等からなる場合 が多く、このような高分散微粒子の構造解析には、 X線吸収原子周り数の均一性があれば解析可能 な XAFS が最適な手法となる。更に、固体触媒の活 性サイトは遷移金属等の比較的重い原子からなる ことが多く、その場合、測定しようとする原子のX 線吸収端エネルギーは比較的高くなる。例えば、 RhのK吸収端は23 keV であるが、このエネルギー 領域では、主に炭化水素等軽元素から成る反応物は ほとんどX線を吸収しない。高圧条件下のように反 応物が高濃度で共存するような条件下でも、金属サ イトの吸収端スペクトル測定が可能になってくる。 言い換えると、原理的には、XAFS 測定は触媒反応 条件下での金属サイトの構造解析に最適な手法な のである。ところが、反応中の分~秒オーダー程度 の構造変化を捕らえるためには、それだけの時間分 解能が必要で、そのためには高強度の連続X線が得 られる放射光の利用が不可欠である。触媒研究でし ばしば利用される 8-30 keV 近辺のエネルギー領域 が利用可能な放射光共同利用施設は日本国内では PFとSPring-8である。実際に我々が利用している PF についていえば、その実験ホール内は、有毒ガ スや可燃性ガスを高圧条件下で使用するような測

定が行われることはあまり想定されていない設計 であり、そのような中で、触媒反応条件下のin-situ XAFS 測定を行うためには、施設側の理解と協力そ してユーザー側のそれなりの工夫が必要となって くる。実験ホール内での有毒ガス、可燃性ガス等を 含めた化学物質のハンドリングには、in-situ XAFS cellの設計と同等もしくはそれ以上の工夫が必要と なる。しかしながら、得られるデータは ex-situ で は得られない多くの情報を含んでおり、その実験に かけた努力が報われる感がある。国外の放射光施設 ではすでに多くの触媒反応条件下の in-situ XAFS 測定が行われてきており、その手法も進化を続けて いる[1]。本稿では、1999 年年末から我々のグルー プで行ってきた固体触媒の反応条件下 in-situ XAFS 測定の現状と結果について報告する。

2.実験を開始するための準備

2-1. in-situ 測定とビームの安定性

触媒反応条件下の in-situ XAFS 測定を始めると、 我々の実験の場合、前処理過程を含め1サンプルに 約1日を要し、この間時々刻々と表面構造が変化す る触媒のX線吸収スペクトルを連続的に測定する。 ー旦実験を開始し、反応が開始すれば、途中で止め ることはできない。測定中にビームダンプが入って しまうと、その実験ははじめからすべてやり直しに なってしまう。したがって、安定したビームが供給 されることが不可欠である。その点 PF は非常に信 頼性が高く、我々はすでに約700時間の測定を行っ てきたが、ビームダンプのために測定が中断された ことはない。

2-2 in-situ XAFS セル

in-situ XAFS 測定を高温高圧流通系反応条件下で 測定している報告はまだ例が少ない。その一因には、

セル設計の中でX線を透過させる部分の素材の選 択、構造のデザインが難しいことが挙げられる。X 線の透過性をよくするためには薄く軽い素材が良 く、反応ガス等の高い内圧に耐えるためには硬い素 材でなくてはならず、この相矛盾する条件を満たさ なくてはならない。一般にX線透過用の窓材として は Kapton[™] が用いられることが多いが、Kapton[™] は高圧条件下の使用には耐えない。ベリリウムはX 線透過性が良く、高圧での使用も可能なことからし ばしば用いられるが、その毒性が問題である。触媒 反応では頻繁に水素処理が行われるが、その過程で 導入した水素により、ベリリウムが膨潤し、強度が 低下する恐れもある。万が一、高圧条件下でベリリ ウムが破損すれば、そのビームラインは暫くの間使 用不能になってしまう。我々のグループでも一旦は ベリリウムの利用を考えたが、他の素材の利用を探 索し、アクリルを窓材として用いてみた。セルの構 造を Fig.1 に示す[2]。セル内部の直径は 11 mmで、 窓の開口部の直径は6 mm。厚さ2~3 mmのアクリル 板を窓材として用いている。このセルで、BL10B にて 11.5 keV の Pt L_{III}-edge, 23 keV Rh K-edge, 24 keV Pd K-edge を測定してきたが、窓材による吸収 が問題となることはなかった。強度は、3 mmの窓板 を用いた場合、内圧 6 MPa まで十分に耐えること が確認された。触媒全体が均一に反応するようにす るためには、セル内のガスの流路を一通にして一様 に流すのが理想であるが、例えばその目的で一方の 窓付近からもう一方の窓付近に向けてガスを流す と、いくら水冷してもガス排出側の窓材が熱いガス で加熱されてしまうのは避けられない。アクリルは プラスチックであるから熱に弱いので、加熱は避け なくてはならない。このセルでは、ガスの導 入口を2系統に分け窓脇の水冷ジャケットの隣か ら導入し中央サンプル下部から排出させている。こ うすることで、窓材の上には常に冷やされたフレッ シュなガスが流れるので、実際に内部を723 K まで 加熱しても窓付近は298 K 程度に保つことができる。

2-3 フローラインの設計

セルのデザインと同様に重要なのが、XAFS 測定 兼触媒反応用フローラインの構築である。Fig.2 に 我々が現在 in-situ XAFS 測定で用いているフロー ラインの概略図を示す。PF の実験ホールは閉じた 空間であるので、その中に有毒または可燃性ガスを 漏洩することは絶対に避けなくてはならない。フロ ーラインに漏れがないように作ることは当然であ るが、万が一漏れたときの対策も施さなくてはなら ない。まず、有毒ガス、可燃性ガスのボンベはボン ベボックスに収納する。ボンベボックスは排気ダク トに接続され内部は常に排気されている。反応セル には簡単なビニール製のフードをかぶせ、排気ダク トに接続し、常に外部から空気が引き込まれる状態 にした。排出ガスの吸着用洗気瓶等はビニールパイ プで接続してあるので一番ガスが漏れやすい所で ある。この部分はアクリルボックス内に収納し、排 気ダクトに接続し排気しておく。以上は予防的な安 全対策であるが、一番問題なのは、排出されるガス そのものである。流通系反応ラインから大量に出る

Figure 1. Schematic diagram of an in-situ XAFS cell designed for measurements under high-pressure and high-temperature conditions. Adapted from ref. [2].

排出ガスは無害化処理を施さないと排気ダクトに 流すことは許されない。Fig.2の系では、20%H₂/He, 100ppm H₂S+20%H₂/He, 20%CO/Ar を使っている。 H₂S は 20% NaOHaq トラップ 2 本を通すことで ppb 以下まで落とすことができる。CO、水素に関して は、扱う量が非常に多いので吸着や希釈の処理は現 実的ではない。この系では、ガスクロの FID(水素 炎イオン化検出器)の機構を応用し、水素炎中に排 出ガスを導き完全燃焼させ、水と CO2 に転換させ た後排気ダクトより排出した。燃焼処理は大量のガ スでも処理できるので便利であるがきちんと燃焼 が起こっているかどうか常に監視する必要がある。

3.応用例

以上のような準備をした後、ようやく実験にはい ることができる。以下に、我々が行ってきた2種類 の実験について紹介する。測定はすべて BL-10B の 標準設定で行った。エネルギーのスキャンはステッ プスキャニングモード、X線吸収は透過モードで測 定している。触媒の構造変化をなるべく細かく追跡 するためには1スペクトルの測定所要時間を短く しなくてはならないが、そうするとスペクトルの質

が落ちて解析不能になってしまう。両者の兼ね合い から1スペクトルの測定時間が10分程度になるよ うにデータ蓄積時間を1ステップ 0.5-1 秒として繰 り返し測定を行っている。

3-1. Rh イオン交換ゼオライト触媒による高温高圧 CO₂接触水素化反応

Rh イオン交換 Y 型ゼオライト触媒(RhY)は CO2 の接触水素化反応に高い活性を示す[3]。シリカを 担体とした触媒と比較すると CO2 転化率で 40 倍 近く高い活性を示す。しかも反応条件を振っても ほぼ 100%メタンを生成する。なぜ、このように高 い活性を示すのか、またメタンのみ生成するのか、 その原因を明らかにするため、様々な検討を行っ てきた。

まずは、活性金属サイトがどのように形成されて 行くのか還元過程について検討した。Rh イオン交 換後 783 K 6 時間焼成した触媒 0.3 g を 10 mmの ディスクに成形し in-situ cell にセットした。Rhの 担持量は 5wt%である。ここに、20%H₂/Ar ガス流通 下(100 ml/min)、7 K/min の昇温速度で加熱をし ながら、Rh K-edge XAFS 測定を行った。得られた

BL10B Radiation Shield Chamber

Figure 2. Schematic diagram of an in-situ XAFS measurement system.

Figure 3.

Rh K-edge in-situ XAFS spectra observed for 5wt% RhY during a reduction process. (a) XANES spectra, and (b) Fourier transform of EXAFS ($k^3\chi(k)$) spectra. The gas was composed of 20% H₂/Ar. The flow rate was 100 ml/min. Temperature was raised continuously at a rate of 7 K/min. Adapted from ref.[2].

XANES スペクトルおよび EXAFS スペクトルの フーリエ変換を Fig.3 に示す[2]。Fig.3 (a)の XANES スペクトルには比較のため Rh フォイルと Rh₂O₃の スペクトルも合わせて示している。Fig.3 (a)を見る とわかるように、焼成直後は酸化物状態であったも のが 20%H₂/Ar 中で加熱して行くと、404 K で大き く変化して金属状態に変化して行くことがわかっ た。さらに EXAFS スペクトルのフーリエ変換をみ ると(Fig.3 (b))、焼成後は Rh 酸化物の Rh-O に帰属 されるピークが 1.5 に、第 2 近接の Rh-Rh に帰属 されるピークが 2.7 に現れるが、室温で 20%H₂/Ar を導入すると、Rh 酸化物の Rh-Rh に帰属されるピ ークは消え、代わりに 2.4 に金属粒子の Rh-Rh

Figure 4.

Fourier transform of Rh K-edge in-situ EXAFS spectra $(k^3\chi(k))$ observed for Li/RhY (Rh= 5wt% , Li/Rh = 10 in atomic ratio) during a reduction process. The gas was composed of 20% H_2/Ar. The flow rate was 100 ml/min. Temperature was raised continuously at a rate of 7 K/min. Adapted from ref.[4].

に相当するピークが現れる。このとき、Rh 酸化物 の Rh-O のピークもまだ 1.5 に見えていることか ら、この状態の Rh 酸化物はアモルファス状態にあ るものと推定される。比較のため還元過程でアモル ファス状態をほとんどとらない例を Fig.4 に示す[4]。 これは、RhY に含浸法により Li を添加し焼成した 触媒(Li/RhY)について同様の測定を行ったもので、 414 K まで Rh 酸化物中の第 2 近接 Rh-Rh が 2.7 に 見える。462 K で Rh-O ピークがほとんど消え、と 同時に 2.7 のピークも消えることから、RhY の場 合とは異なり、Li/RhY の場合はアモルファス状の 酸化物はほとんど形成されないことが推測される。 このLi/RhY 触媒はCO2接触水素化反応の生成物選 択性が RhY と全く異なり、CO が主生成物となる。 Fig.3、4 に示した還元過程における形態の変化は担 体と活性金属サイトの相互作用の違いに由来する 物であり、触媒の反応性に関するインフォメーショ ンを与える物である。しかも、酸化物から還元物へ の変換過程で過渡的に生成する表面種は、反応条件 下で継続的に表面構造を観察しなくては捕らえる ことはできない。しかも、サンプルの同一のポイン トを継続的に観察する in-situ 測定では、ex-situ で は問題となる事が多い、サンプルの厚みや、サンプ ル(触媒)の調製ロットの違いによるスペクトルの 揺らぎを抑えることができるので、表面構造の微小 な変化も抽出し、評価することが可能となる。

Fourier transform of Rh K-edge in-situ EXAFS spectra $(k^3\chi(k))$ observed for 5wt%RhY during high-pressure and high-temperature CO₂ hydrogenation reaction conditions. The gas was composed of 25% CO₂ and 75% H₂. The flow rate was 100 ml/min. Temperature was 250 . The spectra were obtained every 7 min. Adapted from ref.[2].

RhY 触媒は最終的には 723 K で 30 分還元処理を 施した後、CO2接触水素化反応に用いられる。反応 条件は反応ガス 25% CO₂ + 75% H₂, 全圧 3 MPa, 流速 100 ml/min, 反応温度 523 K である。このと き用いたフローラインは Fig.2 のものにセル下流に 加圧のための保圧弁をつけ、また、ガス処理系の前 にガス成分分析のためのガスクロを接続したもの である。Fig.5 に測定した Rh K-edge EXAFS のフー リエ変換を示す[5]。反応時間と共に、2.4 のピー クが微妙に増加しながら変化しているのがわかる。 この時のピークの高さの変化と、ガスクロで分析し た主生成物のメタンの生成量をプロットしたのが Fig.6 である[2]。反応開始後 24 分のところで活性は 極大になるが、このときピーク長も 20 分付近で立 ち上がりが見られ、何らかの形態変化が起こってい る物と推定される。この 2.4 のピークを同じく 523 K で測定した Rh foil の EXAFS から抽出したパ ラメータで解析すると配位数が 7.3 になる。他のデ ータも合わせて検討すると、この時の Rh 粒子はゼ オライト細孔内でちょうど細孔径(13)程度の粒 子を形成している物と考えられ、反応は反応ガスが 細孔内に取り込まれ細孔内を反応場として進行し ていることが結論された。

この系に関しては、反応中の Rh の構造を決定す

Figure 6.

Change in the peak height of Rh-Rh scattering in Fourier transformed Rh K-edge EXAFS oscillation $(k^3\chi(k))$ (open circles), together with CH₄ yield (closed circles) during CO₂ hydrogenation reaction over 5wt% RhY. The conditions were as follows: the gas was composed of 25% CO₂ and 75% H₂. The flow rate was 100 ml/min. Temperature was 250 . The spectra were obtained every 7 min. Adapted from ref.[2].

るため in-situ を始める前、様々な試みを行ってき た。まずは、反応後の触媒をリアクターより取り出 し、再還元して水素吸着を行った。すると、反応後 の触媒上の Rh 粒子は直径約 30 となり、その当時 の結論は反応中の Rh 粒子はアグリゲーションを起 こして 30 の粒子として触媒外表面上で反応して いるというものであったが、ではなぜこのような高 い反応性を示すのか説明することが困難であった [3]。そこで、触媒反応条件にあるものをクエンチ し、グローブボックス中で触媒を XAFS 測定用セル に空気に暴露することなく封じ込め XAFS を測定 した。すると、反応をクエンチした触媒上の Rh は 10 程度の粒子と原子状に高分散化されたものの 混合物から成ることがわかった。そこで、反応は細 孔内で進行し、しかも主生成物がメタンである理由 は反応中に Rh 粒子が表面カルボニル種となって、 活性な金属サイト表面上の吸着 CO 濃度をコント ロールしてメタンが生成しやすい状態を作り出し ているためと結論した[6]。さらにその結果を検証 するため、in-situ 測定を行ったところ全く異なる結 果、即ち、反応中は 13 程度の大きさの粒子状に なって反応をしているという結果を得てしまった のは、上記のとおりである。その原因を明らかにす るため in-situ 実験中、様々な条件での測定を試み た。その結果、RhY 中の Rh 粒子は非常に air sensitive

であることがわかり、ex-site 測定では反応クエンチ 後グローブボックス中で測定セルに移し変える過 程で、グローブボックス中の極微量の酸素等と反応 してしまっていた物と推定している[4]。結局 RhY 触媒の高活性の原因の一つは細孔内を反応場とし て反応物の濃縮の効果があるものと考えているが、 なぜメタン生成に傾くのかその理由はいまだ明か にはなっていない。おそらく、RhY 中の Rh 粒子の 非常にモビリティーの高い特性が原因となって、反 応条件下では反応物の吸着脱離にともなって表面 原子は原子状分散までは行かなくても何らかの構 造変化を起こして吸着 CO 周りの吸着水素濃度を コントロールしているものと考えている。この点を 明らかにできる可能性のある方法のひとつは、秒オ ーダー以下のより高い時間分解能で構造変化を追 うことであろう。前述の通り現在は1スペクトルの 測定に 10 分弱を要している。この状態では、粒子 全体の緩やかな形態変化は捉えることができるが、 表面原子の反応物の吸着脱離に伴う秒オーダー以 下の構造変化を捕らえることはできない。BL-10B でこのような測定は現段階では不可能であるが、 BL-9C で東大岩澤研グループがはじめている Dispersive XAFS では秒オーダーの時間分解能が実 現されてきており、期待されるものである。

3-2. 軽油水素化処理用 USY 担持 Pd-Pt 触媒

原油をはじめとする化石資源は燃料としてまた 化学原料として重要な資源であるが、実際利用され る前には目的に合わせた転換処理がなされるのが 通常である。その際、問題となるのが原料油中に必 ずといっていいほど含まれている硫黄分による転 換反応用触媒の被毒である。その対策技術の要は、 原料油中からの脱硫技術の開発と、耐硫黄性の高い 触媒の開発にある。我々のグループではすでに軽油 の水素化脱芳香族処理用触媒として高活性を示す USY 担持 Pd-Pt 触媒の開発に成功している[7]。Pd も Pt も水素可能の高い触媒であるが硫黄被毒を受 けやすく、硫黄含有成分の共存下では著しく活性が 低下する。ところが、PdとPtを原子比で 4:1 で共 担持した触媒は、耐硫黄性が向上することが見出さ れている。ところが、このように硫黄に弱い金属同 土を共存させることでなぜ耐硫黄性が向上するの かその機構についてはいまだ明らかにされてはい ない。Pd-Pt 合金粒子の構造については、コロイド 状合金粒子や SiO₂-Al₂O₃担体担持 Pd-Pt 粒子系では、 Pt がコアをなしその周りを Pd が覆うというコアモ

Figure 7.

Change in Pd K-edge (a) XANES spectra and (b) Fourier transform of EXAFS spectra ($k^3\chi(k)$) during reduction of 1.2 wt% Pd-Pt/USY under a flow of 20% H₂/He at a flow rate of 120 ml/min. Temperature was raised stepwise and each spectrum was observed keeping the sample at the temperature shown in the figure.

デルが提案されているが[8]、他の担体を用いた触 媒よりも著しく高い性能を示す Pd-Pt/USY 触媒の 担持金属の構造が同じである保証はない。本研究で は、USY 担持 Pd-Pt 触媒の硫化水素共存下での in-situ XAFS を観察を比較検討することで、Pt 添加 による効果を明らかにし、さらに、活性サイトの構 造に関する情報を得ることを目的に実験を行って きている。

触媒はUSY ゼオライトに含浸法により Pd および Pt を担持した物で、Pd-Pt/USY と表すことにする。 Pd-Pt/USY の担持金属量の比は前述のように最も

Figure 8.

Change in Pt L_{III}-edge Fourier transform of EXAFS spectra $(k^3\chi(k))$ during reduction of 1.2 wt% Pd-Pt/USY under a flow of 20% H₂/He at a flow rate of 120 ml/min. Temperature was raised stepwise and each spectrum was observed keeping the sample at the temperature shown in the figure.

活性の高い Pd/Pt=4(原子比)とした。また全金属 担持量は1.2 wt%である。この実験の第1の目的は 活性化された金属粒子の構造に関するインフォメ ーションを得ることである。まず、還元過程の Pd K-edge および Pt Lur-edge の in-situ XAFS を測定 した結果を Fig.7.8 に示す。まず Pd K-edge EXAFS のフーリエ変換の変化から Pd の構造変化を見てみ る(Fig.7 (b))。焼成直後の触媒は1~2 付近に Pd-O, Pd-Cl に帰属されるピークが観測される。焼成した サンプルであるから Pd-O が見えるのは当然あるが、 Pd-Cl の寄与が出るのは、触媒調製時に金属前駆体 として Pd(NH₃)₄Cl₂·xH₂O を使っているため、もとも とリガンドとして存在していた Cl が焼成後も表面 上に残っている物と考えられる。さて、ここに、室 温で 20% H₂/Ar を導入すると一部の Pd は還元され 金属粒子の Pd-Pd に帰属されるピークが 2.4 に現 れる。すなわち、Pd は比較的還元を受けやすく室 温でも還元が進行する。更に温度を上げてゆくと、 373 K では金属状態の Pd-Pd が支配的になり酸化状 態のPdに起因するPd-OやPd-Clは著しく弱くなる。 XANES も 373 K では最終還元物の XANES に類似 した物に変化していることから、373 K ではメイン 種として金属クラスターが形成されている物と推 定される。更に温度を上昇させ 573 K で 1~2 時間

還元することで還元が完了する。これに対して、Pt 側を見てみると(Fig.8)、焼成直後 Pt-O, Pt-Cl の寄与 によるピークが1~2 に現れるのはPdと同様であ るが、323 K まで金属クラスターの Pt-Pt は見えて こない。373 K で、金属クラスター中の Pt-Pt のピ ークが 2.5 付近に見えてくる。スペクトルは示し ていないが、XANES も 373 K で酸化された Pt から 還元された Pt のパターンへの移行が開始する。以 上まとめると、還元過程では、まず Pd 金属粒子の 形成が開始し、続いて Pt の還元が進行する。この 事から金属粒子形成の過程で最も可能性の高い機 構は、まず Pd メタルクラスターが生成し、その後 にそのPd クラスターの周辺にPt が金属粒子を形成 して行くというものである。実際、573 K で測定し た Pd K-edge EXAFS をカーブフィット解析すると、 Pd-Pd の寄与のみでよいフィットが得られるので、 Pd は Pd を主成分とする粒子を形成していることが わかった。Pt が Pd と結合を作って合金化している かどうかは、今回の測定ではスペクトルの質が十分 でないため解析はできていない。

さらに、573 K で還元処理後、553 K で 100ppm H₂S+20%H₂/Ar を流量 120 ml/min で導入した。その ときの経時変化を Fig.9 に示す。Pt Lm-edge には H₂S 導入直後から Pt-S の寄与によるピークが 1.9 に成 長してくる。そして、100分経過した時点以降硫化 は進行しなくなり、100分の時点で硫化が完了して いる物と推定される。これに対して、Pd K-edge は H₂S 導入後徐々に硫化が進行して Pd-S による寄与 が 1.9 付近に現れてくるが、100 分で一気に硫化 が進行し140分のところでほぼ硫化は完了する。ま とめると、まず、Pt側が硫化を受けてその後 Pd が 硫化されるということである。これらの結果から、 活性化後の金属サイトの構造として最も可能性が 高いものは、PdをPtが覆っているという物である。 100ppm H₂S+20%H₂/Ar のガス中の硫化水素/水素比 は実際の軽油モデル反応に用いている物と同一で あるので、硫化条件下での最終的な構造は、実際の 反応中に作用している触媒の構造に近い物と推定 されるが、Pt 上の硫黄は比較的弱い結合で吸着して おり、COを導入することで一部が脱離することが わかった。このように、反応性の高い Pt サイトを 外表面上に形成しそこで反応を進行させているの ではないかと推定されるが、更に詳細な検討は続行 中である。

まだ完全に結論に達しているわけではないが、 USY 中の Pd-Pt 粒子の構造は、当初コロイドや

Figure 9.

Change in Fourier transform of (a) Pd K-edge and (b) Pt L_{III} -edge EXAFS spectra ($k^3\chi(k)$) during sulfidation of 1.2 wt% Pd-Pt/USY under a flow of 100ppm H₂S +20% H₂/Ar at a flow rate of 120 ml/min. Temperature was fixed at 553 K.

SiO₂-Al₂O₃上のPd-Pt粒子と同じPtをコアとするシ ェル構造であろうと推測していたが、様々な検討の 結果、異なる構造である可能性が高くなってきた。 今後はその構造の違いが活性とどのような関連が あるのか明らかにすることが課題である。

さて、Pd-Pt/USY 触媒の Pd-Pt 粒子の構造解析に おける in-situ 測定の意義は、次の2点が考えられ る。まず1つ目は、in-situ 測定で変化するサイトを 知ることで構造を予測できるということである。も し、温度や気相中成分の組成を変えても金属粒子の 構造が変わらないのならば、還元後の触媒や、硫化 後の触媒を取り出して ex-site 測定したスペクトル に関してモデルを立て詳細に検討することである 程度構造に関する予想を立てることは不可能では ない。しかし、そのような場合、可能性のある構造 として複数のモデルが考えられることが多い。反応 が進行し構造が変化して行く過程を in-situ で捕ら えることで、生じうる構造の可能性を絞ることが出 来る。例えば、今回の系では、もし還元後の触媒の スペクトルのみから考えると、Pd は主に単成分で 粒子を形成し、Pt は微粒子もしくは Pd と合金を形 成している可能性が高いということまではわかる が、PdとPtの位置関係は容易には推定できない。 しかしながら、まず Pd の粒子が形成しその後に Pt の還元が進行している過程が in-situ 測定により捕 らえていれば、その時点である程度構造に関する予 測を立てることが出来る。in-situ 測定の2つ目の意 義は、やはり、反応条件下での構造を捉えることが 出来たということである。高温の反応条件下にある ものをクエンチして取り出せば何らかの構造変化 が起こりうる可能性が否定できない。データは示し ていないが、今回の系では、反応温度で 100ppmH₂+20% H₂/He ガスを He ガスにスイッチし たところ明らかに構造に変化が現れた。限りなく in-situ に近い ex-situ 測定を行うためには、所定の 条件下にある触媒を反応ガスと共に、一瞬のうちに 液体窒素温度にしてクエンチするという方法をと ることが必要であろう。それでもなお、真の反応状 態を反映しているのか注意が必要である。

4.まとめ

反応条件下の触媒、特にその最も反応に関与して いる表面の原子は、取り囲む雰囲気の変化で大きく その構造を変え、また、触媒反応の正味では変化が ないように見えても、反応中も次々とその形態を変 化させている。したがって、反応機構を総合的に理 解するためには、反応中に何が起こっているのか直 接観察することが不可欠である。触媒反応条件下の 触媒を in-situ 観察するという研究法は、触媒研究の 中では反応機構解明のための常套手段である。著者 も大学院に進学して初めての仕事は in-situ FT-IR に よる触媒の観察であった。XAFS は固体触媒の活性 サイトの in-situ 測定に最適な方法であるにもかか わらず、日本国内で今まで実際の反応条件下での触 媒の in-situ XAFS 観察が行われていなかったのは、 日本国内の放射光施設内で化学実験を行うために は、一般の触媒実験研究室とはひとつレベルの違う 安全対策が必要なのが明らかで、XAFS をツールと して使う触媒研究者がそこまではなかなか手を出 せなかったからであろう。幸い、職場が放射光施設 に非常に近く、準備のため何度も行き来することが それほど負担でない当グループでは、立ち上げのと きこそ、それなりの苦労もあったが PF スタッフの 方々のご理解ご協力を得て、実験を執り行うことが 出来た。

また、本研究は XAFS 測定用ビームラインとして は最高齢の BL-10B を利用して行った物であるが、 ビームラインが XAFS 測定用に最適化されている ため、測定そのものには何ら問題はなく、もっぱら、 セル周りの反応ラインのコントロールおよび管理 に集中できた。BL-10Bの使い慣らされた古さが、 新しい実験を始める上で大きなメリットとなった。 BL-10B は、PF スタッフの方々のご協力を得て、 in-situ XAFS working sub group と共同で in-situ 測定 用に改造計画が進んでいる。来期のビームタイムか らは、in-situ 用にアップグレードされた姿が見られ るものと期待される。すでに700時間を超える経験 を経て、in-situ の方法も確立されてきた。今後は次 の3つの展開を考えている。一つ目は、より高強度 のビームラインを利用して、できれば、Quick XAFS や Dispersive XAFS といった手法も取り入れ、より 高い時間分解能の出る測定ができるようになるこ と。2つ目は、より厳しい実際の工業的な利用に近 い条件での測定。そのためには、やはり、より高強 度のビーム、金属の壁で出来たセルでも透過できる 光を利用して、より高圧高温な条件下での触媒の状 態を透過法で測定したい。3つ目は、XAFSと他の キャラクタリゼーションの手法を組み合わせ、同時 測定をすることである。XRD と XAFS のコンビネ ーションは良く知られているが[9]、この2つの測 定法は substrate 側の情報しか得られない。吸着種と 触媒活性サイトの構造の同時測定が出来れば、触媒 反応の理解は飛躍的に進むことは間違いない。以上 3つの夢のいずれか一つでも実現させてみたいと 考えている。

最後に、in-situ XAFS working sub group ホームペ ージ (http://staff.aist.go.jp/kk.bando/index-j.html) に少 しずつ情報を掲載しております。ご興味のある方は 是非ご覧ください。

5.謝辞

CO₂接触水素化の in-situ XAFS の測定は、旧 物 質工学工業技術研究所機能表面化学部表面解析グ ループ(現 産業技術総合研究所)の島田広道博士、 松林信行博士、今村元泰氏、斎藤 健博士(現 原 研)、佐藤剛一博士、田中智章博士、Franck Dumeignil 博士(現 農工大)のご指導ご協力のもとに行われ たことを感謝いたします。また、このような実験は 野村昌治教授、宇佐美徳子助手をはじめとする PF スタッフの方々のご理解ご協力がなくては行えな かったものです。また、硫化水素を使用する実験で は、2000 年7月より在籍している産業技術総合研 究所環境調和技術研究部門クリーン燃料グループ (旧 物質工学工業技術研究所機能表面化学部触 媒材料設計グループ)の葭村雄二グループ長、 Lionel Le Bihan 博士、安田弘之博士のご指導ご協力 を得たことをここに感謝いたします。また、PF を 始めとする国内の放射光施設での各種 in-situ XAFS 測定を推進するため立ち上げた、in-situ XAFS working sub group の世話人メンバーの北海道大学 朝倉清高教授、千葉大学一國伸之助手、島根大学 久保田岳志助手、東北大学 白井誠之助手、Virginia Poly Tech 大学 田 旺帝博士の方々は、実際の実 験にもご協力いただき、また、常に多くのご助言ご 協力をいただき in-situ XAFS 測定推進の原動力を 与えていただいていることをここに感謝いたした いと思います。

また、本稿で紹介した研究は PF 課題番号 99G279、 2000G283 により行われました。

引用文献

- [1] 阪東恭子, 表面科学, in press.
- [2] K. K. Bando, T. Saito, K. Sato, T. Tanaka, F. Dumeignil, M. Imamura, N. Matsubayashi, and H. Shimada, J. Synchrotorn Rad., 8, 581(2001).
- [3] K. K. Bando, K. Soga, K. Kunimori, N. Ichikuni, K.Okabe, H. Kusama, K. Sayama, and H. Arakawa, Appl. Catal. A: General, 173, 47 (1998).
- [4] K. K. Bando, T. Saito, K. Sato, T. Tanaka, F. Dumeignil, M. Imamura, N. Matsubayashi, and H. Shimada, Topics in Catalysis, In press.
- [5] K. K. Bando, T. Saito, K. Sato, T. Tanaka, F. Dumeignil, M. Imamura, N. Matsubayashi, and H. Shimada, Photon Factory Activity Report, 18, 58 (2000).
- [6] K. K. Bando, N. Ichikuni, K. Soga, K. Kunimori, H. Arakawa, and K. Asakura, J. Catal., 194, 91 (2000).
- [7] H. Yasuda, and Y. Yoshimura, Catal. Lett., 46, 43 (1997).

- [8] N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, J. Phys. Chem., 96, 9927 (1992), T. Fujikawa, K. Tsuji, H. Mizuguchi, H. Godo, K. Idei, and K. Usui, Catal. Lett., 63, 27 (1999).
- [9] J. W. Couves, J. M. Thomas, D. Waller, R. H. Jones, A. J. Dent, G. E. Derbyshire, and G. N. Greaves, Nature, 354, 465 (1991).

著者紹介

阪東恭子 Kyoko K. BANDO 産業技術総合研究所環境調和技 術研究部門 研究員 〒305-8565 茨城県つくば市東 1-1-1

TEL: 0298-61-4532

FAX: 0298-61-4532

e-mail: kk.bando@aist.go.jp

略歴:1994年東京大学大学院理学系研究科化学専 攻博士課程修了、同年財団法人産業創造研究所化学 研究部研究員、1996年科学技術振興事業団科学技 術特別研究員、1999年物質工学工業技術研究所特 別研究員、2000年物質工学工業技術研究所任期付 研究員、2001年産業技術総合研究所研究員、現在 に至る。理学博士。

最近の研究:燃料油水素化処理用固体触媒の in-situ XAFS による表面構造解析の研究。

趣味:音楽鑑賞。