リソソームタンパク質の輸送における ARF による GGA タンパク質の膜へのリクルートの分子機構

志波 智生^{1,2}, 川崎 政人¹, 高津 宏之^{3,4}, 禾 晃和^{1,5}, 松垣 直宏¹, 五十嵐 教之¹, 鈴木 守¹, 加藤 龍一¹, 中山 和久^{3,6}, 若槻 壮市¹

¹高エネ研・物構研・構造生物学研究センター,²国際科学振興財団,³筑波大・生物系, ^{4(現)}理研・免疫アレルギー研,^{5(現)}マックスプランク生物物理学研究所,^{6(現)}京都大院・薬

Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport

Tomoo Shiba^{1,2}, Masato Kawasaki¹, Hiroyuki Takatsu^{3,4}, Terukazu Nogi^{1,5}, Naohiro Matsugaki¹, Noriyuki Igarashi¹, Mamoru Suzuki¹, Ryuichi Kato¹, Kazuhisa Nakayama^{3,6}, Soichi Wakatsuki¹

¹Structural Biology Research Center, Photon Factory (PF), Institute of Materials Structure Science, KEK,
 ²Foundation for Advancement of International Science (FAIS),
 ³Institute of Biological Sciences and Gene Research Center, University of Tsukuba,
 ⁴Present address: Research Center for Allergy and Immunology, RIKEN,
 ⁵Present address: Max-Planck-Institut fuer Biophysik,
 ⁶Present address: Faculty of Pharmaceutical Sciences, Kyoto University

1. はじめに

ヒトを初めとする真核生物の細胞には、膜で仕切られた 細胞内小器官が多数存在し、それぞれが固有の役割を持っ ている。例えば、核は遺伝情報の担い手である DNA を管 理し、ミトコンドリアはエネルギーの生産を行い、ゴルジ 体は新しく合成された分泌タンパク質の修飾や選別を行っ ている。それぞれの細胞内小器官への物質の輸送は、膜が くびれて形成される輸送小胞により行なわれる。クラスリ ン被覆小胞を介した小胞輸送はその代表例であり、エンド サイトーシスと呼ばれる細胞内への物質の取り込みや分泌 タンパク質の細胞内輸送などに関与している。ゴルジ体か ら目的地へと出発する積荷タンパク質は、トランス・ゴル ジ・ネットワーク(TGN)膜に局在する積荷タンパク質受 容体によって集められ、アダプタータンパク質の助けを借 りてクラスリン被覆小胞の中に取り込まれ、目的地へと運 ばれる。クラスリン被覆小胞を介した小胞輸送は神経にお ける情報伝達などにも関わっており、この輸送系に異常が 起きると神経の麻痺など様々な疾患が引き起こされる。従 って、小胞輸送現象を理解することは、生物学的に興味深 いだけでなく医学的な見地からも重要である。

クラスリン被覆小胞形成のアダプタータンパク質とし ては AP 複合体が以前から知られていたが、最近それに加 えて GGA タンパク質が発見された [1]。GGA タンパク質 は、トランス・ゴルジ・ネットワーク(TGN)膜からの輸 送小胞形成に関与する。GGA タンパク質は3つのドメイ ンからなる(Fig. 1)。N 末端の VHS ドメインはマンノー ス 6 リン酸受容体などの輸送タンパク質受容体の細胞質領 域と結合する。GAT ドメインは GGA タンパク質ファミリ ーで保存されている領域で、輸送小胞の形成開始シグナル として働く ARF (GTP 結合型)と相互作用する。C 末端 の GAE ドメインは同じアダプタータンパク質である AP-1 複合体の γ-ear ドメインと相同性がある (Fig. 1)。GAT ド メインと GAE ドメインの間のヒンジ領域は輸送小胞の被 覆タンパク質であるクラスリンと相互作用する。

GGA ファミリーは、その重要性と新規性から非常に注 目を集め、世界中からその立体構造に基づいた制御機構に ついての論文がすでに幾つか報告されている [2-7]。これ まで、我々のグループは、GGA1の VHS ドメインとマン ノース6リン酸受容体のC末端領域のペプチドとの複合 体の構造 [2] や、GAE ドメインのホモログである AP1 複 合体の γ-ear ドメインの結晶構造を明らかにした [6]。最後 に残った GAT ドメインの構造決定は国際的に熾烈な競争 となり、我々のグループと、英国ケンブリッジ大学、米国 NIH 及び米国オクラホマ大学の計4つのグループがほぼ同 時に構造決定に成功した [8-11]。TGN 膜に結合した ARF に GAT ドメインが結合することによって、GGA は TGN 膜にドッキングし、輸送小胞の形成を開始することが出来 る。我々のグループは GAT ドメイン単体だけでなく、そ の N 末端領域 (N-GAT) と ARF1(GTP 結合型) との複合体 のX線結晶構造も明らかにした [8]。これにより GGA タ ンパク質が ARF により、TGN 膜にリクルートされるメカ ニズムが明らかになった。

2. 実験

2.1 タンパク質の発現・精製と結晶化

ヒト GGA1 タンパク質の GAT ドメイン(166-305 残基) をコードする DNA 断片を PCR を用いて増幅し、グルタ チオン -S- トランスフェラーゼ(GST)との融合タンパク

Figure 1 Schematic diagrams of AP-1 complex and GGA.

質として、大腸菌内で発現させ精製した。プロテアーゼで GST 部を切断除去し、GAT ドメインのみを結晶化に用い た。また、同様に ARF1 (Q71L 変異により GTP から GDP への加水分解が起こらず、GTP結合型に固定された変異体) と N-GAT ドメイン(166-210 残基)をそれぞれ発現・精製し、 両者を混合して複合体を形成し、ゲルろ過クロマトグラフ ィーを用いて複合体を精製し結晶化に用いた。

GGA1 タンパク質の GAT ドメイン単体の結晶は、35 % MPD, 2 % PEG6000, 0.1 M Tris-HCl (pH 7.5) を結晶化剤と するハンギングドロップ蒸気拡散法で作製した (Fig. 2a)。 また、ARF1(GTP-form)の結晶は、24 % PEG3350, 0.2 M CH₃COONH₄, 0.1 M acetate buffer (pH 4.0) を結晶化剤とする ハンギングドロップ蒸気拡散法で作成した (Fig. 2b)。また、 ARF1 と N-GAT ドメインの複合体結晶は、10 % PEG 3350, 0.2 M KI を結晶化剤とするハンギングドロップ蒸気拡散法 で作製した (Fig. 2c)。

2.2 X線回折強度データの測定と構造決定・精密化

GGA1 タンパク質の GAT ドメインの結晶のX線回折強 度データは、KEK PF のビームライン BL-18B (λ=1.0 Å)の 放射光を用いて、2.1 Å 分解能のデータを R_{merge}=0.045 の精 度で測定した。また、位相情報を得るためにセレノメチオ ニン化した GAT ドメインの結晶のX線回折強度データも 3 種類の異なる波長 (λ=0.9500, 0.9806, 0.9808 Å)で、KEK PF のビームライン BL-18B の放射光を用いて測定した。

ARF1(GTP-form)の結晶のX線回折強度データは、KEK PFのビームライン BL-6A (λ=0.977 Å)の放射光を用いて、 1.5 Å 分解能のデータを *R*_{merge}=0.043 の精度で測定した。

また、ARF1とN-GATドメインの複合体結晶のX線回

Figure 2

(a) Crystal of the GGA1 GAT domain, (b) Crystal of the ARF1 (GTP-form), (c) Crystal of the GGA1 N-terminal GAT domain in complex with ARF1 (GTP- form). Bars indicate 0.1 mm in length.

折強度データは、KEK PF のビームライン BL-18B (λ=1.0 Å)の放射光を用いて、1.6 Å 分解能のデータを *R*_{merge}=0.048 の精度で測定した。その他の測定結果の統計値を Table 1 (Appendix) に示した。

GGA1 タンパク質の GAT ドメイン単体の結晶構造は、 セレノメチオニン化したタンパク質の結晶を用いた多波長 異常分散法 (MAD) で決定した。ARF1(GTP-form) の結晶 構造は、ARF6 の GTP-form をモデル分子として用いた分 子置換法で決定した。また、ARF1 と N-GAT ドメインの 複合体の結晶構造は、ARF1 (GTP-form) の構造をサーチ モデルとする分子置換法で決定した。その後、構造精密化 を行ったところ、GAT ドメイン単体、ARF1 (GTP-form)、 ARF1 と N-GAT ドメインの複合体の結晶学的 *R* 値はそれ ぞれ 24.7, 19.0, 19.8 % となった。その他の精密化の統計値 を Table 1 に示した。

3. 結果と考察

3.1 GGA1 タンパク質の GAT ドメインの構造

構造解析の結果、GGA1のGATドメインは、3本のα-ヘリックスから構成されていることが明らかになった(Fig. 3)。Fig. 3bは、Fig. 3aを90°回転して3本のヘリックス を上から見た図である。N末端のヘリックスは、他の2本 のヘリックスのおよそ2倍の長さを持つ。また、N末端の 26残基は、電子密度が明瞭ではなく、結晶中でフレキシ ブルな構造をとっているものと考えられる。

3.2 GAT ドメインと類似の構造を持つタンパク質

GGA1のGATドメインに良く似た立体構造のタンパク 質を検索したところ、CALM[12]とLAP[13]タンパク質 の一部がGATドメインと似ていることが分かった。これ らのタンパク質は、ともにAP180のホモログであり、ク ラスリン被覆小胞形成に関与するタンパク質である。Fig.

Figure 3

Ribbon diagram of human GGA1 GAT domain. The GAT domain forms three α -helices connected by loops of varying length. The final model is complete except for the N-terminal 26 residues (166-191: dotted line) and the C-terminal 2 residues (304-305) whose electron density is very weak. (a) side-view, and (b) top-view.

Figure 4

Comparison of the GGA1 VHS-GAT domain with AP180 homologues. (a) Ribbon diagram of the N-terminal domain of CALM (PDB 1HG5, Clathrin Assembly Lymphoid Myeloid Leukaemia Protein). The α 1 to α 7 are shown in blue and α 9 to α 11 in green. Inositol hexakisphosphate molecule is shown in a ball-and-stick model. (b) Ribbon diagram of the N-terminal domain of *Drosophila* clathrin adaptor protein LAP (PDB 1HX8). α 1 to α 7 are shown in blue and α 9 to α 12 in green. (c) Ribbon diagram of the VHS domain of GGA1 complexed with the C-terminal cation independent-M6PR (CI-M6PR) peptide (PDB 1JWG) in the same orientation as in (a). CI-M6PR peptide is shown in a ball-and-stick model. (d) Ribbon diagram of the GGA1-GAT domain in the same orientation as in (a).

4a は CALM の立体構造、Fig. 4b は LAP の立体構造であ り、緑色で示してある部分が GGA1 の GAT ドメイン (Fig. 4d)の立体構造と類似している。興味深いことに、N末 端側の青色で示してある部分は、GGA1のVHSドメイ ン (Fig. 4c) と良く類似した立体構造を有している。両者 の構造を比較すると、緑色で示してある GAT ドメインの 領域では、GGA1のGATドメインのN末のヘリックスが CALM や LAP と比較して少し長いということ以外では良 く類似している。また、青色で示してある VHS の領域で は、CALM と LAP では、GGA1 の VHS ドメインと比較す ると、α6 と α8 が欠損していることと、α7 が VHS と比較 して少し長いということ以外、良く類似している。ただし、 CALM は、ホスファチジルイノシトール -4,5- 二リン酸な どのリン脂質を介して、膜に結合している。それに対して、 GGA タンパク質は、GAT ドメインを介して、膜上に存在 している GTP 結合型 ARF と相互作用し、膜にリクルート される。これらの点で、GGA タンパク質と AP180 のホモ ログは、立体構造は類似しているが、膜への結合の観点か ら見ると大きく異なっている。

3.3 4つのグループが構造解析した GGA1 タンパク質の GAT ドメインの構造比較

我々のグループとほぼ同時に、英国ケンブリッジ大学 のグループ、米国の NIH のグループ及び米国オクラホマ 大学のグループは独立に GGA1 の GAT ドメインの立体構 造を決定した [8-11]。4 つのグループが決定した GAT ドメ インの C 末端側の 3 本のヘリックス構造は非常に良く一 致しているが、N 末端側は大きく異なっている。C 末端側

Figure 5

Comparison of the crystal structures of GGA1 GAT domains determined by the four groups. The diagram was made by the least-square minimization of the overlap of C-terminal GGA1 GAT domains (199-299) from the four groups.

の3本のヘリックスを重ね合わせた図を Fig. 5 に示す。ケ ンブリッジ大学のグループ [9] とオクラホマ大学のグルー プ [11] の晶系は hexagonal で空間群が P63 であり、4 つの ヘリックスから構成されているが、我々のグループ [8] と NIH のグループ [10] の晶系は Rhombohedral で空間群が R3 であり、3 本のヘリックスから構成されていて N 末の領域 は disorder している。我々が GAT ドメインの N 末端領域 の円二色性 (CD) スペクトルを測定したところ、完全に はフォールドしていないことが分かった。したがって溶液 中の GAT ドメインは、4 本のヘリックスにフォールドし た構造と、N 末端領域がアンフォールドした構造との平衡 状態にあると考えられる。

3.4 N-GAT ドメインと ARF1 との複合体の構造

ARF と相互作用するのは GAT のフレキシブルな N 末端 領域である。GAT ドメインと ARF は溶液中で安定な複合 体を形成するが(平衡解離定数は約1µM)、我々が試みた 多数の結晶化条件下ではどうしても複合体の結晶は得られ なかった。そこで ARF と相互作用する GAT の N 末端領 域(N-GAT)だけを発現・精製し、ARFと複合体を形成 させて結晶化したところ、初めて複合体の結晶を作ること が出来た (Fig. 2c)。N-GAT と ARF1 の複合体の全体構造を、 Fig. 6 に示す。Fig. 6b は、Fig. 6a を 90° 回転して N-GAT の2本のヘリックスを横から見た図である。また、ARF1 に結合している GTP と Mg²⁺ は、ball-and-stick モデルで示 してある。Fig. 6cには、N-GATの(Fo-Fc)を係数とする omit 電子密度図 (1.5 σ) を示した。このように、N-GAT の 明瞭な電子密度を確認することができた。GAT ドメイン 単体では、そのフレキシブルさのために構造を決定するこ とはできなかった N 末端領域(N-GAT)であるが、ARF1 と複合体を形成するとヘリックス - ループ - ヘリックスの 構造を形成し、次に述べる様に ARF1 のスイッチ1 領域と スイッチ2領域と相互作用していることが明らかになっ た。

a

Figure 6

Ribbon diagram of the ARF1/N-GAT complex. N-GAT forms a helix-loop-helix motif facing the Switches 1 and 2 of ARF1-GTP. (a) side-view, and (b) top-view.(c) Stereo view of the omit *Fo-Fc* electron density map of the GGA1 N-GAT (L178-N194) within the ARF1/N-GAT complex. The map was calculated to 1.6 Å resolution and displayed at 1.5 σ cutoff, superimposed with a ball-and-stick model of the N-GAT domain.

3.5 N-GAT ドメインと ARF1 の相互作用様式

N-GAT ドメインと ARF1 との相互作用の様式をステレ オ図に示した(Fig. 7a)。相互作用に関与しているアミノ 酸残基を ball-and-stick モデルで示した。N-GAT ドメイン は、2本のα- ヘリックスを形成し、ARF1 のスイッチ1 及 び2 領域と相互作用している。Fig. 7b は相互作用してい る面を開いて見た図である。GGA1 の GAT ドメインは、 2本のα- ヘリックスから形成される疎水性領域で GTP 型 の ARF1 のスイッチ1 と2 領域を主に疎水性相互作用で

Figure 7

Interaction between ARF1 and GGA1 N-GAT. (a) Stereo diagram of the ARF1/N-GAT interface. Ball-and-stick models in yellow with red labels represent residues of N-GAT which interact with ARF1, and A193 which is located in the hydrophobic core formed by $\alpha 0$ and α 1. Ball-and-stick models in gray with black labels show ARF1 residues which interact with N-GAT. (b) ARF1/N-GAT interface shown as an 'open book' representation. The residues involved in the interactions are indicated by ball-and-stick models (bond colors: N-GAT in green, ARF1 in yellow). In the left panel, residues of N-GAT involved in the interaction are labeled in black and corresponding residues from ARF1 in blue. The right panel shows the other side of the interaction, ARF1-GTP in ribbon diagram with its residues in the interface labeled in black and corresponding residues of N-GAT in red. Asterisks denote hydrogen-bond interactions. The switches 1 and 2, and the interswitch region of ARF1 are highlighted in red and blue, respectively.

認識している。また、GGA1 の GAT ドメインの相互作用 に関与しているアミノ酸(Leu178, Leu182, Leu190, Ile197, Asn194, Val201)に変異を入れると、GTP 型の ARF1 と相 互作用しなくなるという報告 [9,14,15] は、立体構造から よく説明できる。

3.6 他の ARF 結合タンパク質 / ARF 複合体との構造比較

ARF 結合タンパク質と ARF との複合体については、こ れまで ARFGAP[16] と ARFGEF[17] について立体構造が決 定されている。ARFGAP は ARF の GTP 加水分解活性を促 進する GTPase-activating protein (GAP) であり、ARFGEF は GDP を GTP と交換し、GTP 型の ARF を作り出す Guanine nucleotide exchange factor (GEF) である。ARF と N-GAT の 相互作用様式は、これらのいずれとも異なっている(Fig. 8)。また、GGA と ARFGAP が GTP 結合型 ARF に対して

Figure 8

Comparison of the ARF1/N-GAT complex with other complex structures of ARF and ARF-interacting proteins shown in stereo diagrams. In panels (a)-(d), regions which interact with ARF are highlighted in green and the rest in dark gray. The switches 1 and 2, and the interswitch region of ARF are shown in red and blue respectively and the rest is in light gray. Encircled "N" and "C" stand for the N- and C-termini. (a) ARF1/N-GAT complex (this work). (b) ARF1/ARFGAP complex [16]. (c) ARF1/Sec7 domain complex [17]. (d) Ar12/PDE\delta complex [18].

競合し合うという生化学データ [15] も、GGA と ARFGAP がともに ARF のスイッチ 2 領域に結合するという立体構 造から説明できる。

3.7 GAT ドメイン全体と ARF の結合モデル

GAT ドメイン単独の構造と N-GAT/ARF 複合体中の N-GAT とで共通する 199-205 残基の部分を重ね合わせた モデルと、今までに得られた知見をまとめたものが Fig. 9 である。重ね合わせモデルでは、ARF と結合した GAT ド メインは 4 本のヘリックスからなる。これはケンブリッ ジ大学のグループ [9] とオクラホマ大学のグループ [11] の GAT ドメインの構造と類似する。フレキシブルな GAT の N 末端領域は、ARF と結合することによってヘリックス-ループ-ヘリックス構造として安定化されると考えられる。

4.まとめ

我々は、GGA1のGATドメイン単体および、GATドメ インのN末端領域(N-GAT)とARFとの複合体のX線結 晶構造を決定した。その結果、GATドメインのC末端側 は3本のα-ヘリックスの束から成っていた。一方N-GAT はフレキシブルな構造で、ARFと結合することによって ヘリックス-ループ-ヘリックス構造として安定化される ことが分かった。N-GATは、ARFのスイッチ1および2 領域と疎水性相互作用で結合していた。

クラスリン被覆小胞の制御タンパク質としては、近年 になって見いだされた GGA タンパク質の他に以前から研 究されていた AP 複合体が知られている。AP 複合体はそ の名の通り、4 つのサブユニットからなる巨大分子であ るのに対し、GGA タンパク質はそれ単体でクラスリン・ ARF・輸送タンパク質との結合を行い、細胞内輸送を制御 する (Fig. 9)。我々はこれまでで GGA のドメインごとの 構造機能解析をほぼ終了した。GGA のドメインの間は長

Figure 9

Domain organization of GGA and a proposed model of the interactions with its partners during the vesicle formation. The N-terminal VHS domain recognizes the sorting signals such as M6PR (PDB 1JWG). The GAT domain interacts with a membrane-bound ARF (in this study). The subsequent hinge region interacts with clathrin (clathrin terminal domain complexed with clathrin-box peptide from β 3-hinge of AP-3, PDB 1C91). The sequence S*LLDDELM interact with VHS domain (autoinhibition) when S* is phosphorylated [19]. Finally, the C-terminal GGA1 GAE domain is modeled from the structure of the ear domain of γ -adaptin (PDB: 1IU1) based on their similarity both in sequence and function.

いリンカーでつながっており、全ドメインを含む結晶構造 解析は困難である。今後は GGA 全体の構造変化をX線小 角散乱などの手法で明らかにし、細胞内輸送の制御機構を 原子レベルで理解することを目指している。

引用文献

- Robinson, M. S. and Bonifacino, J. S., Curr. Opin. Cell Biol. 13, 444-453 (2001).
- [2] Shiba, T., Takatsu, T., Nogi, T., Matsugaki, N., Kawasaki, M., Igarashi, N., Suzuki, M., Kato, R., Earnest, T, Nakayama, K. and Wakatsuki, S., Nature, 415, 937-941 (2002).
- [3] Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S. and Hurley, J. H., Nature, 415, 933-937 (2002).
- [4] Kato, Y., Misra, S., Puertollano, R., Hurley, J. H. and Bonifacino, J. S. Nat. Struct. Biol. 9, 532-536 (2002).
- [5] Zhu, G., He, X., Zhai, P., Terzyan, S., Tang, J. and Zhang, X. C. FEBS Lett. 537, 171-176 (2003).
- [6] Nogi, T., Shiba, Y., Kawasaki, M., Shiba, T., Matsugaki, N., Igarashi, N., Suzuki, M., Kato, R., Takatsu, H., Nakayama, K. and Wakatsuki, S. Nat. Struct. Biol. 9, 527-531 (2002).
- [7] Kent, H. M., McMahon, H. T., Evans, P. R., Benmerah, A. and Owen, D. J. Structure 10, 1139-1148 (2002).
- [8] Shiba, T., Kawasaki, M., Takatsu, H., Nogi, T., Matsugaki, N., Igarashi, N., Suzuki, M., Kato, R., Nakayama, K. and Wakatsuki, S. Nat. Struct. Biol. 10, 386-393 (2003).
- [9] Collins, B. M., Watson, P.J. and Owen, D. J. Dev. Cell 4, 321-332 (2003).
- [10] Suer, S., Misra, S., Saidi, L. F. and Hurley, J. H. Proc. Natl. Acad. Sci. 100, 4451-4456 (2003).
- [11] Zhu, G., Zhai, P., He, X., Terzyan, S., Zhang, R., Joachimiak, A., Tang, J., and Zhang, X. C. Biochemistry 42, 6392-6399 (2003).
- [12] Ford, M. G. et al. Science 291, 1051-1055. (2001).
- [13] Mao, Y., Chen, J., Maynard, J. A., Zhang, B. and Quiocho, F. Cell **104**, 433-440 (2001).
- [14] Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M. and Bonifacino, J. S. Cell **105**, 93-102 (2001).
- [15] Takatsu, H., Yoshino, K., Toda, K. and Nakayama, K. Biochem J. 365, 369-378 (2002).
- [16] Goldberg, J. Cell 96, 893-902 (1999).
- [17] Goldberg, J. Cell 95, 237-248 (1998).
- [18] Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A.
 & Hillig, R. C. EMBO J. 21, 2095-2106, (2002).
- [19] Doray, B., Bruns, K., Ghosh, P. and Kornfeld, S. Proc. Natl. Acad. Sci. 99, 8072-8077 (2002).

(2003年7月1日原稿受付)

著者紹介

志波智生 (Tomoo SHIBA) 高エネルギー加速器研究機構・ポスドク研究員 〒 305-801 茨城県つくば市大穂 1-1 TEL: 0298-79-6176 FAX: 0298-79-6179

e-mail: shiba@pfweis.kek.jp

略歴:2000年東京大学大学院薬学系研究科博士後期課程 修了、2000年東京大学薬学部研究員、2001年国際科学振 興財団研究員・高エネルギー加速器研究機構協力研究員、 2002年より現職。薬学博士。

川崎 政人 (Masato KAWASAKI) 高エネ研・物構研・助手、理学博士。

高津 宏之 (Hiroyuki TAKATSU) 理研・免疫アレルギー科学総合研究センター・ポスドク研 究員、理学博士。

禾 晃和 (Terukazu NOGI) マックスプランク生物物理学研究所・ポストドクトラルリ サーチフェロー、理学博士。

松垣 直宏 (Naohiro MATSUGAKI) 高エネ研・物構研・助手、理学博士。

五十嵐 教之 (Noriyuki IGARASHI) 高エネ研・物構研・助手、理学博士。

鈴木 守 (Mamoru SUZUKI) 高エネ研・物構研・助手、理学博士。

加藤 龍一 (Ryuichi KATO) 高エネ研・物構研・助教授、理学博士。

中山和久 (Kazuhisa NAKAYAMA) 京都大院・薬学研究科・教授、医学博士。

若槻 壮市 (Soichi WAKATSUKI) 高エネ研・物構研・教授、Ph.D.

(Appendix)

Table1 Data processing and refinement statisticsCrystallographic data

	GGA1 GAT domain	ARF1 (Q71L)	N-GAT / ARF1
Space group	R3	<i>C</i> 2	$P2_{1}2_{1}2_{1}$
Cell dimensions (Å)	a = 85.1, c = 59.1	<i>a</i> = 127.6, <i>b</i> = 50.8, <i>c</i> = 52.1	<i>a</i> = 49.4, <i>b</i> = 76.9, <i>c</i> = 61.9
(°)	$\alpha = 90, \gamma = 120$	$\beta = 113.4$	
Solvent content (%)	51.9	41.2	47.8
Data processing statistics			
	GGA1 GAT domain	ARF1 (Q71L)	N-GAT / ARF1
Wavelength (Å)	1.0 (PF-BL18B)	0.977 (PF-BL6A)	1.0 (PF-BL18B)
Temperature (K)	100	100	100
Resolution (Å)	30 - 2.1 (2.21 - 2.1)	30 - 1.5 (1.58 - 1.5)	30 - 1.6 (1.69 - 1.6)
Total reflections	64,602	155,298	194,166
Unique reflections	9,302	44,086	30,626
Completeness (%)	100.0 (99.6)	89.8 (62.8)	96.4 (83.1)
$R_{\text{merge}}(\%)$	4.5 (26.7)	4.3 (20.1)	4.8 (24.5)
I / sigma	9.2 (2.8)	12.9 (3.1)	11.0 (3.0)
Models			
	GGA1 GAT domain	ARF1 (Q71L)	N-GAT / ARF1
Number of protein atoms	887	2,664	1,663
Number of water molecules	108	313	278
Number of GTP atoms	-	64	32
Number of Ions molecules	-	$Mg^{2+}: 2$	$Mg^{2+}: 1, I^{-}: 2$
Average <i>B</i> -factor ($Å^2$)	46.5	13.2	16.8
Refinement statistics			
	GGA1 GAT domain	ARF1 (Q71L)	N-GAT / ARF1
Resolution range (Å)	30 - 2.1	20 - 1.5	30 - 1.6
Reflections in working / free set	8,858 / 443	41,851 / 2,221	29,080 / 1,545
<i>R</i> -factor / $R_{\text{free}}(\%)$	24.7 / 29.4	19.0 / 21.1	19.8 / 22.7
R.m.s. deviation from ideal values	3		
Bond length (Å)	0.018	0.008	0.012
Bond angle (°)	1.74	1.23	1.56
Ramachandran plot			
Most favoured (%)	85.7	94.3	94.1
Additionally allowed (%)	13.3	5.7	5.9
Generously allowed (%)	1.0	0	0
Disallowed (%)	0	0	0

Values in parentheses are for the highest resolution shell.

 $R_{\text{merge}=\Sigma i\Sigma j}|\langle Ii\rangle - Iij\rangle |\Sigma i\Sigma jIij\rangle$, where $\langle Ii\rangle$ is the mean intensity *i*th unique reflection, and *Iij* is the intensity of its *j*th observation.