高輝度放射光を用いたコンビナトリアル試料の高速評価と研究例

組頭広志,尾嶋正治 東京大学大学院工学系研究科応用化学専攻

High-Throughput Characterization of Combinatorial Thin Film Libraries using *in situ* Synchrotron-Radiation Photoemission Spectroscopy

Hiroshi Kumigashira and Masaharu Oshima Department of Applied Chemistry, The University of Tokyo

1. はじめに

「コンビナトリアル手法」と聞いて, PFニュースの読者 の方は何を思い浮かべるであろうか?筆者の予想によると 大きく2つのグループの研究者に分かれると思われる。一 つは,創薬開発やタンパク質の構造解析に携わる研究者で あり,もう一つは,物質科学に携わる研究者である。前者 においては,コンビナトリアル手法を用いた機能の高速ス クリーニングは普遍化した技術であり,「固体材料開発の 分野においても,合成装置の自動化による試料のパラレル 合成と高効率の機能スクリーニングとによる機能探索が始 まりつつある」と認識していただくだけで良いと思う。す でにバイオの分野におけるコンビナトリアル手法に関して は優れた解説書が数多出版されているので,ここでの「バ イオ」を「マテリアル」に置換してイメージして頂ければ 十分である。そのため,この後は主に材料開発に携わって いる研究者を対象として話を進めてゆく。

「コンビナトリアル手法」を簡単に説明すれば、「たくさ ん作って、たくさん測る」である。勘(固体物理・無機化 学に裏付けられた知識)と熟練を磨いた名人芸と文献調査 に基づき一つ一つ作ってはそれを評価するのではなく、組 成や構造の異なる試料を集積化したライブラリー(コンビ ナトリアルライブラリー)を作製し、その機能を高速・高 効率に探索するといった手法である。「組成・構造と機能 との相関関係をまとめたデータベースをもとに機能を探索 する」といった帰納的な物質探索の速度を、自動化・情報 化により飛躍的に向上させる技術と考えてもらえればいい と思う[1]。

本手法が注目され始めた理由として、次世代エレクトロ ニクス材料として盛んに研究が行われているナノ物質や強 相関物質においては、これまでの半導体デバイス材料開発 で有効な手法であった「理論計算による機能予測とそれに 基づく物質設計」がほとんど不可能なことが挙げられる。 本稿で紹介する強相関酸化物薄膜においては、現代の半導 体エレクトロニクスの根本土台である「一電子近似(バン ド計算)」の適用が難しい場合が多い。そのため、強相関 エレクトロニクス実現に向けた材料開発においては様々な 条件下での電子状態を系統的に測定した膨大なデータが必 要となるが、これらはコンビナトリアル手法と高輝度放射 光を用いた高効率な光電子分光評価とを組み合わせること で可能となる。すなわち、構成元素やヘテロ構造の異なる 薄膜・超格子のパラレル合成が可能なコンビナトリアルレ ーザー分子線エピタキシー(MBE)装置 [2]を導入し、試 料を集積化したライブラリーの一括 *in situ* 光電子分光測定 を行うことで、強相関電子材料の表面・界面電子状態を高 速にかつ系統的に得る。これにより、物性(機能)発現機 構を明らかにすることが可能となる。本稿では、その目的 のために開発・建設を進めてきた実験装置と、それを用い た強相関酸化物コンビナトリアルライブラリーの *in situ* 放 射光光電子分光研究について紹介する。

高輝度放射光を用いたコンビナトリアル in situ 光電 子分光

近年,光電子分光装置の分解能・検出効率は,高温超伝 導体に代表される強相関酸化物の研究を通して飛躍的に向 上した [3]。この「高効率・高分解能」化した光電子分光 測定において,1)高輝度,2)高分解能,3)高指向性,4) 波長可変,などの優れた特徴をもつシンクロトロン放射光 を励起光として用いることにより,コンビナトリアル試料 の高速評価といった「高分解能」かつ「高効率」といった 相矛盾する要求に答えることができる。パターンニングさ れた試料ライブラリーの評価には,測定手法の分析領域が 大きな要因となるが,放射光光電子分光における実用的な 分析領域径は,数十 µm 程度であり,これはレーザー MBE で作製されるコンビナトリアルライブラリー,つまり,数 百 µm の大きさを持つ薄膜試料の評価には十分である。光 電子分光法は,まさにコンビナトリアル試料評価のための 分析・評価手法といえる。

しかしながら,光電子分光の「表面敏感」故に,測定用 試料の取り扱いには細心の注意を払わなければならない。 そこで,酸化物薄膜の光電子分光評価においては,レーザ ー MBE 法(あるいはパルスレーザー堆積法)により作製 した試料を,超高真空を破ることなく光電子分光装置に搬 送して in situ 測定を行うことが重要となる。ここで言う「in situ 光電子分光」とは,レーザー MBE 法(あるいはパル スレーザー堆積法)により作製した試料を,超高真空を破 ることなく光電子分光装置に搬送して光電子分光を行うこ とを指している [4]。

3. コンビナトリアルレーザー MBE + in situ 光電子分光 複合装置の建設

酸化物薄膜の精密評価のために絶対条件となる in situ 測 定を可能とするために建設・改良を行った「コンビナトリ アルレーザー MBE + in situ 光電子分光複合装置」の概略 図を Fig. 1 に示す [5]。装置は,「レーザー MBE 槽」,「試 料評価槽」、「光電子測定槽」の主に3つの部分からなっ ており, 互いに超高真空下で連結されている。レーザー MBE 槽において反射型高速電子線回折装置(RHEED)で 成長状態をモニターしながら表面を原子レベルで制御し た薄膜を作製し、試料評価槽において低速電子線回折装置 (LEED) やオージェ電子分光法 (AES) で表面の結晶性お よび清浄性を評価した後,光電子測定槽に搬送する。光電 子エネルギー分析器としては、高効率測定を目的としてマ ルチチャンネルプレートを装備したガンマーデータシエン タ社製 SES-100 静電半球型アナライザーを採用している。 さらに、ステッピングモーター制御のマニピュレーターを 用いることにより,自動角度・位置測定が可能である。また, レーザー MBE では、マスクパターンとターゲット回転を 組み合わせることにより,同一基板上に異なる薄膜を複数 同時成長可能であり [1,2], これを上記のマニュピレータ と組み合わせることによって、異なる薄膜試料の電子状態 の一括マッピングが可能である。本装置は KEK-PF の放射 光ビームライン (BL-1C; 30 eV ~ 300 eV, BL-2C; 250 eV ~

Figure 1

A schematic bird's eye view (top) and a layout diagram (bottom) of the sample entry, preparation, combinatorial laser MBE, and photoemission analysis chambers of the "*in situ* synchrotron-radiation photoemission + combinatorial laser MBE system".

1500 eV)に接続されており,放射光の持つ高輝度,高指 向性,高分解能といった利点を用いることにより,高スル ープットかつ高分解能で,集積されたコンビナトリアル試 料の一括測定が可能となっている。

4. コンビナトリアル試料の高速評価

4-1. 温度傾斜ライブラリーの in situ 放射光光電子分光解析

コンビナトリアルレーザー MBE により作製可能なラ イブラリーは、a)ターゲットの打ち分けによる組成傾斜 ライブラリー(組成セルライブラリー), b) 基板加熱温 度(成長温度)を連続的に変化させた温度傾斜ライブラ リー, c) 膜厚・周期などを変化させた超構造ライブラリ ー,に大別できる [1,2]。始めに、本装置を用いた測定例 として, Sr 組成を変化させた La_{1x}Sr_xMnO₃ (LSMO) 薄膜 の組成ライブラリーにおける in situ 光電子分光について 説明する [6,7]。まず, コンビナトリアルレーザー MBE に おいて, Fig. 2 左側に模式的に示す様な Sr 組成(x) を変化 させた LSMO 薄膜ライブラリーを SrTiO₃ (001) 基板 (STO 基板)上に作製する。この試料ライブラリーは、試料準備 槽においてその試料表面の結晶性・清浄性を評価した後, 光電子測定槽に搬送される。光電子分光装置においては, ステッピングモーター制御のマニュピレーターを測定プロ グラムと連動させることにより, ライブラリー上をスキャ ンしながら、各部分において光電子分光測定を行う。これ により, Sr 組成を x = 0, 0.2, 0.4, 0.55 と系統的に変化させ た時の LSMO 薄膜の電子状態変化が一回の測定で決定で きる (Fig. 2 右側)。得られた内殻スペクトルの強度比か ら,作製した試料の(表面)組成が正確に制御されている ことがわかる。さらに、価電子帯のフェルミ準位近傍に注 目すると、Sr 濃度(ホール濃度)の増大に伴い、結合エ ネルギー約 0.8 eV に存在する Mn 3d eg 準位がその強度 を減少させながら、フェルミ準位に近づいていく様子が観 測されている。このことは、Sr置換により e,準位にホー ルがドープされていることを示している。詳しい解析の結 果,ドープ量 x と e。準位強度に比例関係があることが明 らかになった [7]。このことは、逆に、e,準位強度からド ープ量が評価できることを示している。現在、この方法を

Figure 2

Schematic of combinatorial photoemission analysis of valence band for laser MBE grown $La_{1,x}Sr_xMnO_3$ film libraries.

La_{1-x}Sr_xFeO₃ [8], Sr_{1-x}Ca_xRuO₃ [9] といった他の遷移金属酸 化物薄膜にも適用し,組成による電子状態変化のデータベ ース化を進めている。

4-2. 温度傾斜ライブラリーの in situ 放射光光電子分光解析

この in situ 光電子分光評価は,酸化物薄膜の成長条件最 適化にも極めて有用である。その例として,温度傾斜ライ ブラリーの評価について紹介する。貴重なビームタイムを 有効に利用するためには,測定試料の成長条件(成長温度・ 酸素分圧等)の最適化が鍵となるが,一枚一枚薄膜を作製 しその光電子スペクトル測定していると成長条件最適化だ けでビームタイムが終わってしまう。そのため,温度傾斜 法を用いて成長温度を 200 ~ 300 ℃ 連続的に変えたライ ブラリーを作製し,その in situ 光電子分光評価を行うこと で迅速な成長条件最適化を行っている。例として,Fig. 3 に温度傾斜ライブラリーを用いた NdMnO₃ (NMO)の成長 条件最適化について示す。特殊な基板ホルダーを用いるこ とにより,800 ℃ から 1050 ℃ まで温度勾配をつけた STO 基板上に NMO を堆積する (Fig. 3 (a))。次に,そのライブ ラリー上をスキャンすることにより,Fig. 3(c) に示す O 1s 内殻光電子スペクトル(酸素原子の化学結合状態)のイ メージングが得られる。このイメージングから,温度傾斜 膜の化学結合状態の変化が明確に見て取れる。この結果か ら、1. Fig. 3(b)に示したO1sのピーク位置が約1000 ℃ でプラトーを持つこと、また、2. 表面析出物に起因す るO1s内殻の高結合エネルギー側のピーク(Fig. 3(c)下図 の矢印)が950 ℃を境に消失すること、が明らかになり、 これより1000 ℃付近が最適な試料作製条件であることが わかる。この様に、一回のスキャンで(酸素分圧も変えた 場合、数スキャンで)試料最適条件が決定できる。この手 法は、特に最適成長条件が狭い試料に対して非常に有用であ る[10]。

4-3. 超構造ライブラリーの in situ 放射光光電子分光解析

最後に,超構造ライブラリーの in situ 放射光光電子分 光解析例として SrRuO₃ (SRO) 超薄膜の膜厚依存性の結 果について紹介する。数少ない導電性酸化物である SRO は,酸化物としては高い伝導性を有し,かつ化学的に非常 に安定なため,酸化物デバイスにおける電極材料として応 用が期待されている。さらに近年,SRO/SrTi_{0.99}Nb_{0.01}O₃ シ

Figure 3

(a) Photograph of a NdMnO₃ film on a STO substrate during the deposition using temperature gradient method and (b) plots of growth temperature (left) and corresponding O 1s peak position (right) as a function of substrate position. The O 1s peak positions are obtained from the O1 s core level imaging (c) for the temperature gradient library.

Figure 4

Thickness dependent photoemission spectra near the Fermi level of SRO ultrathin films using a thickness-gradient combinatorial library.

Figure 5 Temperature dependence of resistivity for ultrathin $SrRuO_3$ films with various nominal film thicknesses. The inset shows a phase diagram of ultrathin SRO films as a function of temperature and thickness.

ヨットキー接合においてパルス電圧印加による可逆の抵 抗スイッチング現象が報告され,不揮発性メモリー応用 に向けた研究開発が行われている [11]。一般にペロブスカ イト酸化物を用いたデバイスにおいては,その電気・磁気 特性が膜厚やヘテロ界面の構造に非常に敏感であることが 報告されている [12]。そこで,SRO 極薄膜が示す特性の 膜厚依存性について明らかにすることを目的として,レー ザー MBE 法により膜厚を制御した SRO 膜厚傾斜ライブ ラリーを作製し,その電子状態の膜厚依存性について測定 した [13]。その結果を Fig. 4 に示す。フェルミ準位近傍の Ru 4d 状態に注目すると,2つの臨界膜厚が存在すること が見て取れる。一つは、膜厚4-5 ML での金属 - 絶縁体 転移であり、もう一つは、約15ML以上でのRu 4d 状態変 化の飽和である。また、その間、膜厚が5から15 MLの 範囲において膜厚の増加とともにフェルミ準位上の状態密 度が徐々に増加していく様子が見られる。この様子は、フ ェルミ準位上の強度プロットをみれば一目瞭然である。こ のスペクトルの変化は電気抵抗測定における抵抗率の変化 (Fig. 5) と良い一致を示している。また、遍歴強磁性体で ある SRO においてはフェルミ準位上の Ru 4d の高い状態 密度はその磁性に深く関わっている [9]。すなわち、フェ ルミ準位上のRu4d由来のピーク強度の増加は、SROの 強磁性状態の安定化に対応しているものと考えられる。物 性測定から得られた磁気相図(Fig. 5 挿入図)と比較する と、フェルミ準位上の強度が大きくなる 7~15 ML にかけ て強磁性転移温度(T_c)が上昇し、スペクトル強度が飽和 する 15 ML 以降で Tc が飽和するといったきれいな相関が あることがわかる。この結果は、放射光光電子分光評価に より,酸化物機能の高速スクリーニングが可能であること を示している。現在,この手法をLSMO/ABO₃/LSMO(ABO₃ = La_{1-x}Sr_xFeO₃ [14], LaAlO₃, STO [15]) 等の完全スピン偏極ト ンネル接合界面の構造最適化等に適応することで、界面に おける電荷移動現象の解析と界面構造最適化を行っている。

5. まとめと今後の展望

コンビナトリアルレーザー MBE 装置と in situ 放射光光 電子分光装置を組み合わせることによって、系統性の高い データを高速で測定することが可能となっている。これに より,「機能を理論的に予測できない」という遷移金属酸 化物を用いた材料開発における最大の問題を克服し、機能 性材料の設計指針を構築することができる。加えて、本研 究手法においては系統的かつ精密なデータが再現性よく取 得可能なため、強相関酸化物薄膜・超構造の電子状態の組 成・膜厚(次元性)・ヘテロ構造依存性といった基礎研究 の観点からも有益な情報が得られている [16]。さらに、こ れらの2次元的コンビナトリアル測定と光電子取り出し角 度を変化させた深さ方向解析を組み合わせることにより, 電子状態の3次元マッピングも可能になり、新しい界面物 性の開拓へと繋がる。これらの電子論的パラメータを変化 させた場合の電子状態の変化と物性変化との相関関係を特 定し、物質設計にフィードバックするといったアプローチ は強相関酸化物を用いた新機能材料開発には極めて有効な 手法であり、アンジュレーター挿入光源による高輝度化と 相まって今後の展開が期待される。

謝辞

本稿で述べた研究は、S2課題(2002S2-002, 2005S2-002;代表者,尾嶋正治)のもとに実施されたもの で,堀場弘司(理化学研究所播磨研究所),大久保勇男(東 京大学大学院工学系研究科),小野寛太(高エネルギー加 速器研究機構物質構造科学研究所),藤森淳(東京大学大 学院新領域創成科学研究科),Mikk LIPPMAA(東京大学 物性研究所),川崎雅司(東北大学金属材料研究所),鯉沼 秀臣(物質・材料研究機構),の各氏,および尾嶋研究室学生, 藤森研究室学生との共同研究であり,ここに感謝いたしま す。また,本研究の遂行に当たっては,KEK 共同開発研 究費,および科学研究費補助金(A16204024, S17101004) より援助して頂きました。

引用文献

- [1] コンビナトリアルテクノロジー –明日をひらく'も の作り'の新世界, 鯉沼秀臣, 川崎雅司監修, 丸善 株式会社
- [2] H. Koinuma and I. Takeuchi, *Nature Materials* 3, 429 (2004).
- [3] 高橋 隆,佐藤 宇史,組頭 広志:固体物理35, 346 (2000).
- [4] 分子線エピタキシー成長表面の in situ 光電子分光, 尾嶋正治,組頭広志,岡林潤,小野寛太,放射光 Vol 16, No. 5 (2003), pp 278-287.
- [5] K. Horiba, H. Ohguchi, H. Kumigashira, M. Oshima, K. Ono, N. Nakagawa, M. Lippmaa, M. Kawasaki, and H. Koinuma : *Rev. Sci. Instrum.* 74, 3406 (2003).
- [6] H. Kumigashira, K. Horiba, H. Ohguchi, D. Kobayashi, M. Oshima, N. Nakagawa, T. Ohnishi, M. Lippmaa, K. Ono, M. Kawasaki, and H. Koinuma, *J. Electron Spectr. Rel. Phenom.* 136, 31-36 (2004).
- K. Horiba, A. Chikamatsu, H. Kumigashira, M. Oshima, N. Nakagawa, M. Lippmaa, K. Ono, M. Kawasaki, and H. Koinuma, *Phys. Rev. B* 71, 155420 (2005).
- [8] H. Wadachi, D. Kobayashi, H. Kumigashira, K. Okazaki, T. Mizokawa, A. Fujimori, K. Horiba, M. Oshima, N. Hamada, M. Lippmaa, M. Kawasaki, and H. Koinuma, *Phys. Rev. B* 72, 035108 (2005).
- [9] M. Takizawa, D. Toyota, H. Wadati, A. Chikamatsu, H. Kumigashira, A. Fujimori, M. Oshima, Z. Fang, M. Lippmaa, M. Kawasaki, and H. Koinuma, *Phys. Rev. B.* 72, 060404(R) (2005).
- [10] J. Matsuno, Y. Okimoto, Z. Fang, X. Z. Yu, Y. Matsui, N. Nagaosa, H. Kumigashira, M. Oshima, M. Kawasaki, and Y. Tokura, *Thin solid films* 486, 113-116 (2005).
- [11] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, *Appl. Phys. Lett.* 86, 012107 (2005).
- [12] 十倉好紀:固体物理 36,743 (2001).
- [13] D. Toyota, I. Ohkubo, H. Kumigashira, M. Oshima, T. Ohnishi, M. Lippmaa, M.Takizawa, A. Fujimori, K. Ono, M. Kawasaki, and H. Koinuma, *Appl. Phys. Lett.* 87, 162508 (2005).
- [14] H. Kumigashira, D. Kobayashi, R. Hashimoto, A. Chikamatsu, M. Oshima, N. Nakagawa, T. Ohnishi, M. Lippmaa, H. Wadati, A. Fujimori, K. Ono, M. Kawasaki, and H. Koinuma, *Appl. Phys. Lett.* 84, 5353 (2004).
- [15] H. Kumigashira, A. Chikamatsu, R. Hashimoto, M.

Oshima, T. Ohnishi, M. Lippmaa, H. Wadati, A. Fujimori, K. Ono, M. Kawasaki, and H. Koinuma, *Appl. Phys. Lett.* **88**, 192504 (2006).

[16] 放射光光電子分光によるコンビナトリアル試料の 高速評価,組頭広志,表面科学会誌 Vol. 25, No. 11, pp684-689, 2004.

(原稿受付:2006年6月26日)

筆者紹介

組頭広志 KUMIGASHIRA Hiroshi

東京大学大学院工学系研究科応用化学 専攻 講師 〒113-8656 東京都 文京区 本郷 7-3-1 TEL:03-5841-7192 FAX:03-5841-8744

E-mail : kumigashira@sr.t.u-tokyo.ac.jp

略歴:1998年東北大学大学院理学系研究科修士課程修了, 日本学術振興会特別研究員 (DC1),2000年東北大学大学 院理学系研究科博士課程修了,日本学術振興会特別研究員 (PD),2001年東京大学大学院工学系研究科助手,2004年 2001年東京大学大学院工学系研究科講師。理学(博士)。 最近の研究:高輝度放射光を用いた機能性酸化物界面の電 子状態研究。

尾嶋正治 OSHIMA Masaharu

東京大学大学院工学系研究科応用化学 専攻 教授 〒113-8656 東京都 文京区 本郷 7-3-1 TEL:03-5841-7191 FAX:03-5841-8744 E-mail:oshima@sr.t.u-tokyo.ac.jp

略歴:1974年東京大学大学院工学系研究科修士課程修了, 日本電信電話公社電気通信研究所入社,1981年スタンフ ォード大学電気工学科客員研究員,1984年工学博士(東 京大学),1995年東京大学大学院工学系研究科教授,2006 年東京大学放射光連携研究機構長。工学博士。

最近の研究:高輝度放射光を用いた半導体表面科学の研究。