最近の研究から

PF における磁場中回折実験 --- 超巨大磁気抵抗効果の新しい機構の提案

若林裕助¹, 宮野健次郎² ¹KEK・PF,²東大先端研

Diffraction measurements under magnetic field at the Photon Factory ---Another mechanism of the colossal magneto resistance

Yusuke WAKABAYASHI¹, Kenjiro MIYANO² ¹Institute of Materials Structure Science, KEK ²RCAST, University of Tokyo

1. はじめに

KEK PFでは 2005 年にリング改造を行い,従来の7本 の挿入光源の増強に加え,4本の新たな挿入光源を設置で きるようになった。この4本には硬X線を発生する短周期 アンジュレータ (Short Gap Undulator, SGU)を設置する予定 となっており,2005 年度に構造生物ビームライン BL-17A が,そして 2006 年度に構造物性ビームライン BL-3A が建 設された。BL-3A は大型四軸回折計と,8T 超伝導磁石を 備えた大型二軸回折計を設置しており,2006 年 10 月 5 日 に初めてX線の発生を確認した。このビームラインはこの 原稿執筆時点で立ち上げ作業中であり,2007 年 1 月から 共同利用を開始する。

ビームラインは立ち上げ中であるが,マグネットは昨年 度,今は取り壊されてしまった BL-16A1 で稼動した実績 がある。既に Mn 酸化物薄膜の軌道秩序状態が磁場によっ てどのように壊されていくかを観測しており,これまでみ られた超巨大磁気抵抗効果と,薄膜に見られるそれが違う 機構に起因する可能性を示唆する結果を得ている [1]。本 稿では,BL-3A に常設される超伝導マグネットを用いて 行われる磁場中X線回折の有効性について,この薄膜の結 果を通して紹介する。

2. BL-3A

新生 BL-3A は周期長 1.8 cm の SGU を光源としたビ ームラインであり, PF の SGU ビームライン第二号であ る。一号機は BL-17A で構造生物のビームラインとして, 20 µm × 20 µm に集光した光を用いた蛋白質構造解析ステ ーションとして活躍している。BL-17A の光学系は小さく 集光する光を作るためのものであり,アンジュレータの高 輝度を活かした光学系である。一方で BL-3A は構造物性 ビームラインとして計画がスタートした段階で,マルチポ ールウィグラービームライン BL-16A の閉鎖と一体の計画 となっており, BL-16A の肩代わりが可能か,という観点 で見ざるを得ない部分があった。

BL-3A 設計の思想は, BL-16A の代替でありつつ, BL-16A を超える部分を出そう, というものであった。こ こ数年の BL-16A の利用形態を調べると, 14 keV がカッ トオフである平行化ミラーを抜いた例が一つしかなかった。そこで、14 keV 以下に特化した設計でよいと判断した。そして、そのエネルギー以下ではどのエネルギーでもそれなりの強度を出すことが必要であった。放射光のエネルギー可変性を活かした共鳴X線散乱を行うためである(4 keV から 14 keV の間のエネルギーで、ほとんどの 3d、5d、希土類金属のどれかの吸収端をカバーできる)。この条件のためにアンジュレータの周期長として 1.8 cm という条件が決まった。

この段階で色々と計算した結果, BL-16A を超えるフラ ックスはどうやっても得られないが, 桁違いに弱いという 事は無いということがわかった。残るは, BL-16A に無か った"何を"加えるかである。

初期の段階では、軟X線まで取り出せるようにして、3d 金属のL吸収端共鳴散乱までカバーできないか、という 事を検討したが、モノクロメータを2種類置く必要ができ るなど、どう考えても非現実的になったために諦めた。現 実的な案として、ビームラインの途中、モノクロメータと ミラーの間に移相子を組み込んで、可変偏光ビームライン にする、という案が採択された。移相子による偏光の操作 には、角度発散の小さなX線が不可欠であり、既存のビー ムラインに置いた場合、集光を諦め、左右方向に相当ビー ムを捨てることで必要な平行度を達成していたが、モノク ロメータとミラーの間に移相子を入れることで、取り込む ことのできるX線量を大きくすることができる。

このようにしてデザインされた BL-3A は現在,(1)回折 計は完全に働く,(2)移相子以外のビームラインコンポー ネントは全て回折計制御ソフトの上から制御可能,(3)ア ンジュレータギャップも回折計制御ソフトから制御可能, という状態に整備されている。2月以降に移相子の立ち上 げが始まったらすぐに,移相子も同じソフトから制御す る事となる。この(2)と(3)の制御には小菅氏の STARS シ ステムを用いており,(3)の制御のためには光源系の帯名, 塩屋両氏に対応して頂いた。

3. 磁場中X線回折に対する需要

BL-3A は四軸回折計も備えているが、そちらはしばら

Figure 1 The 8T superconducting magnet attached to the two-circle diffractometer installed to BL-16A1.

く忘れることとして、本稿では以下、磁場中X線回折に話 題を絞る。特定領域研究(代表者:青山学院大学 秋光純 教授) で昨年度 BL-16A に導入した 8T マグネットをその まま BL-3A に移設した (Fig. 1)。これまで PF には磁場中 X線回折用の超伝導マグネットが常備されておらず、磁場 中で面白い現象が発見された、あるいは磁場応答が面白い 物質が発見された、という場合、PFの回折計を用いた実 験はできなかった(BL-3Cの白色磁気散乱用に水冷マグネ ットがあるが、磁気散乱測定用に特化した装置であるため、 普通の測定に用いるには無理がある)。そのため、例えば 90年代後半に物性物理分野で盛んに研究された超巨大磁 気抵抗効果についても、ゼロ磁場での測定しかできない状 況であった。この例に限らず、(1)f電子系の研究では温度 のほかに磁場を変化させた測定は広く行われており、磁場 誘起相も多数報告されている、(2)超伝導特性も磁場との 関連が当然あるなど、物性物理の研究手段として、磁場印 加は不可欠なものである。

X線回折は磁性に敏感なプローブではないため,磁場 中のX線回折は磁場中の中性子散乱実験に比べて遅くま で普及してこなかった。我々の知る限りでは,国内では, 90年代半ばに慶応大の田島研究室に入った 8Tマグネッ トが強磁場中X線回折装置の始まりである [2]。その後, 全国の大学の実験室系に何台かマグネットが入った後, SPring-8にもマグネットが導入された。現在ではパルスマ グネットで 30 T までの測定が SPring-8 ではなされるよう になっている。このように,最近になって急速に磁場中で の構造情報を得ることの重要性が認識されてきている。今 や磁場中の回折装置は,PFのような施設では " 無いほう がおかしい " 装置である。

以下,このマグネットを用いて,BL-16A1 で行われた 研究について紹介する。

4. 超巨大磁気抵抗効果の新しい機構

磁気抵抗効果(磁場によって電気抵抗が変化する効果) は多くの磁気記録媒体の読み取りヘッドに使われている。

これを利用して、ディスク表面近傍の磁場の大きさと向き を電気抵抗の変化として測定して、書き込まれた情報を読 み出す、という仕組みである。書き込みを高密度にするた めには、非常に小さい領域の磁気情報を読む必要があり、 必然的に弱い磁場を検出する必要が出てくる。弱い磁場を 検出するためには、磁気抵抗効果が大きいほど良い。最近 では巨大磁気抵抗効果を持つ構造体が開発され、HDDの 容量が非常に大きくできるようになった。そして、巨大 磁気抵抗効果より大きな磁気抵抗効果、超巨大磁気抵抗効 果 (CMR) を持つ物質として、マンガン酸化物が注目を集 め、およそ10年にわたって非常に多くの研究がなされて きた。マンガン酸化物のCMRには、2種類あることが知 られている [3]。一つは、磁場によって電荷秩序状態(Mn の3+イオンと4+イオンが交互配列してできる絶縁状態) が壊される、というもの(CMR1)、もう一つは強磁性転移 温度付近でのスピンのゆらぎが磁場によって抑制される ことに起因する、というもの (CMR2) である。CMR1 は全 く違う2つの状態を磁場で変化させるので一次相転移とな る。こちらの物質群は全体が均一ではなく、金属状態と絶 縁体状態が混ざった状態をとり, 金属状態が端から端まで つながったときに大きな電気抵抗の変化が生じる、という 状況であることが多くの研究から明らかにされている [4]。 CMR2 はイメージしづらいと思うので、もう少し説明を加 えておこう。電気伝導に関係する電子の移動を妨げる要 因の一つがスピン散乱である。結晶格子のスピンが全部同 じ向きを向いていれば、その中を走る電子は滑らかに動く ことができる。しかし、スピンがまちまちな方向を向いて いる中を電子が動く場合には、ガタガタの道を走るような もので、色々な方向に電子が力を受けてしまう。磁場を印 加して方向をそろえることで道を舗装できる、というのが CMR2を起こす物質である。

さて、ここで測定したのは Mn 酸化物薄膜である。な ぜ薄膜かというと、実際に小さな読み取りヘッドなどを 作る段階では薄膜技術を用いて微小な構造を作製するの で、薄膜状態での CMR 効果がどのようなものであるかを 知る必要があるからである。2 年ほど前までは、明瞭な金

Figure 2 Resistivity vs temperature along the two orthogonal in-plane directions [100] and [0-11] under several magnetic fields.

Figure 3 (a) (032) peak profile at 120 K and 50 K under several magnetic fields. (b) Schematic view of the electronic structure in the low-temperature insulating phase.

属 - 絶縁体転移をする薄膜は作られていなかったが、最近 になってペロブスカイトの [011] 基板に薄膜を成長させる ことで明瞭な転移を示す薄膜が作れることがわかってきた [5,6]。そのような薄膜の中の一つ、LSAT 基板に作製した Pr_{0.5}Sr_{0.5}MnO₃ 薄膜 (PSMO/LSAT) について、磁場中および ゼロ磁場での測定を行った。ゼロ磁場での測定は NSLS の X22C で、磁場中での実験は PF BL-16A1 で行った。

この薄膜の電気抵抗の温度依存性をいくつかの磁場で測 定した結果をFig.2に示す。ゼロ磁場では100 K 付近に金 属 - 絶縁体転移点があるが,5 T では絶縁化しないことが 見て取れる。この低磁場低温絶縁相はどのような状態であ ろうか?X線回折で見ると,低温では Bragg 反射が金属 -絶縁体転移点で明瞭に分離し,格子定数が大きく変化し ていることがわかる。Fig.3(a) に120 K と 50 K で測定し たピークプロファイルを示した。X線回折で見る限り,低 温相と高温相の間には,Bragg 反射の分裂以外の違いは無 かった。つまり,低温絶縁相でより複雑な構造に変化する ということは無く,構造の変化としては単位胞が歪んだ形 になるのみだという事がわかった。このひずみ方から,低 温絶縁相での電子配置は Fig.3(b) に示したような,x²-y² 型の軌道秩序状態であると期待される。膜ではなくバルク の Mn 酸化物の場合,このような電子配置の場合には電気

Figure 4 (a) Magnetoresistance and magnetotransmittance at 60 K. (b) Magnetization curve at 60 K. (c) Magnetic field dependence of the peak intensity at 50 K. Low-temperature peaks disappear around 4 T and the high-temperature structure recovers. All the peaks show hysteresis.

抵抗は非常に異方的になる。つまり,電子軌道が延びてい る面内の伝導度は高く,そうでない方向には大きな電気抵 抗を持つ。今の薄膜試料について考えると,電流が[100] に沿っている方向では小さな電気抵抗が,[0-11]の方向で は大きな電気抵抗が期待される。しかし,Fig.1を見てわ かるように,低温絶縁相における電気抵抗は非常に等方的 である。

次に, 電気抵抗, 赤外吸収, 磁化, 低温相/高温相に該 当する Bragg 反射強度の磁場依存性を測定した結果を Fig. 4に示す。通常, Mn酸化物では磁化が大きいと電気抵抗 が小さい、という相関が完全に成り立っているものであっ たが、この膜はそうではなかった。60 K では磁場を 4.5 T かけないと電気抵抗が小さくならないが、磁化は 0.5 T も かければ飽和に近いほど出ている。また、磁場を下げた ときにはゼロ磁場まで下げきる前に電気抵抗が増大して いるが、磁化曲線を見るとそれに該当する変化は全く見ら れない。この電気抵抗は微視的に見ても同じ傾向を示す。 CMR1のように、二相共存状態が大きな役割を果たすので あれば、電気抵抗と赤外吸収の磁場依存性は異なるはずで ある。低エネルギーの赤外線吸収率は直流電気抵抗と同じ 意味の物理量を測定しているはずであるが、もし絶縁領域 と金属領域が混在しており,磁場を大きくするにつれて金 属領域が大きくなっていくのだとしたら、金属領域が端か ら端までつながった瞬間に電気抵抗は大きな変化を示す一 方,赤外吸収ではそのような変化は見られないはずである。 実験結果はどうかというと、Fig. 4 に示したように,赤外 吸収と電気抵抗は完璧に同じ線の上に乗る。つまり,二相 共存が重要な役割を果たすという状況では無いことがわか った。膜の中の CMR では、通常ならば完全な相関を持つ はずの電気抵抗と磁場の関係が崩れており、また二相共存 が大きな役割を果たすということも無いということがわか った。これだけ通常と異なった結果が出ているので、通常 の機構と異なる CMR が生じていると考えるほうが自然で ある。では電気抵抗は何に支配されているのだろうか?こ こでX線回折強度の磁場依存性を見て欲しい。低温絶縁相 の Bragg 反射強度が磁場を増やしていくと4T 前後で消失 し、磁場を減少させたときには1T付近で再び現れている。 これは磁化曲線とは大きく異なった変化であり、電気抵抗 の磁場依存性、つまり磁気抵抗効果と良く似ている磁場依 存性である。つまり、構造が薄膜中での磁気抵抗効果に大 きな役割を果たしているのではないかと期待できる。ここ では,一つの有望なシナリオを提案する。低温絶縁相では, 格子が変形しており,電子の分布が異方的になることによ って、電子系が低次元の特徴を持ったものに変わる。一般 に低次元電子系は局在しやすく, 金属伝導を生じることは まれである。どのような局在化が起こるかであるが、電気 抵抗の温度依存性なども考慮に入れると、ポーラロン(格 子ひずみを回りに引き連れた電荷、普通の電子より動きが 重い)が形成され、伝導においてはそれがポツポツと飛び 移るような機構がもっともらしい。

このような局在化による絶縁化は既に層状物質などで重 要であると言われているものである。この薄膜では,電子 系の次元性が温度や磁場で変化する,という点が層状物質 とは異なり,温度や磁場で変化する電気抵抗として現れて いるのだろう。

5. おわりに

PF で磁場中のX線回折ができる,という状態になった ことで,どのような研究が可能になったか,という一つの 例をここで紹介した。このマグネットの一番代表的な使い 方は,ここで示したように磁場中で性質が変化する物質の 構造研究に利用する事であろう。移相子と組み合わせるこ とで,磁性の研究にも力を発揮するに違いない。

ここで紹介した磁石や回折計の立ち上げ・整備は佐賀山 基博士,有馬孝尚教授,澤博教授の尽力によるものです。 この研究は荻本泰史博士,田久保直子博士,田丸博晴助手, 永長直人教授との共同研究として,05S2-003の課題で科 研費基盤研究 S(15105006)と特定領域研究(16076207)の援 助を得て行いました。

引用文献

- Y. Uozu, Y. Wakabayashi, Y. Ogimoto, N. Takubo, H. Tamaru, N. Nagaosa, and K. Miyano, Phys. Rev. Lett. 97, 037202 (2006).
- [2] 田島圭介,下村晋, 篠田嘉雄,政田元太,大隅寛幸, 木田芳利, 固体物理 **32**,631 (1997).
- [3] H. Aliaga, D. Magnoux, A. Moreo, D. Poilblanc, S. Yunoki, and E. Dagotto, Phys. Rev. B 68, 104405 (2003).
- [4] T. Wu and J. Mitchell, Appl. Phys. Lett. 86, 252505 (2005).

- [5] Y.Ogimoto, M.Nakamura, N.Takubo, H.Tamaru, M.Izumi, and K.Miyano Phys. Rev. B 71 060403(R) (2005).
- [6] Y.Wakabayashi, D.Bizen, H.Nakao, Y.Murakami, M.Nakamura, Y.Ogimoto, K.Miyano and H.Sawa, Phys. Rev. Lett. 96 017202 (2006).

(原稿受付日:2007年1月9日)

著者紹介

若林裕助 Yusuke WAKABAYASHI
物質構造科学研究所 助手
〒 305-0801 茨城県つくば市大穂 1-1
TEL: 029-879-6025
FAX: 029-864-3202
e-mail: yusuke.wakabayashi@ kek.jp
略歴: 2001 年慶應義塾大学大学院理工学研究科博士課程
修了,2001 年千葉大学大学院自然科学研究科助手,2002
年物質構造科学研究所助手。博士(理学)。
最近の研究:主として強相関酸化物薄膜や表面の構造的研

究。(バルクも測りますし、錯体や有機物も測ります。)

宮野健次郎 Kenjiro MIYANO

東京大学先端科学技術研究センター 教授

〒153-8904 東京都目黒区駒場 4-6-1

TEL • FAX: 03-5452-5075

e-mail: miyano@myn.rcast.u-tokyo.ac.jp

略歴:1974年ノースウエスタン大学・物理修了,1976年 アルゴンヌ国立研究所所員,1983年東北大学電気通信研 究所助教授,1988年東京大学工学部助教授,1991年東京 大学工学部教授,2001年より現職。Ph.D.

最近の研究:構造変化が可能な強相関酸化物薄膜における 外場誘起相転移の研究。光,電場,磁場などによる絶縁体・ 金属転移の分光測定,超高速ポンプ・プローブ計測をつか った多自由度の相互依存状況の解明と強相関の理解。