分子性伝導体における電子の結晶化 ~ 幾何学フラストレーションと Wigner 結晶~

澤 博 名古屋大学 工学研究科 応用物理

Electron Crystallization in Molecular Conductor ~ Spiral Frustration and Wigner Crystal ~

Hiroshi SAWA Department of Applied Physics, Nagoya University

1. はじめに

様々な相互作用は、新しい物性、現象などを解き明かす 鍵である。物質の基底状態を決定することは、相互作用が 本来どこにその安定点を持とうとしているのかという、最 も基本的な答えを探すことに等しい。ここでは、物質の構 造を決定する基本的な手法であるX線回折を用いて分子性 結晶の電荷秩序について述べる。よく言われることである が、合金や酸化物のように構成元素が少なく結晶構造も単 純ないわゆる「無機物」と呼ばれる物質群は、電子状態か ら見ると複雑である。これは、物性を記述する様々な自由 度が対称性の高さゆえに縮退しているためであると考えら れる。一方、結晶の繰り返し単位であるユニットセル内に 数多くの原子が含まれることになる分子性結晶は、実はむ しろ電子状態が単純でモデル化しやすい。このため、実験 と理論とを対応させやすい教科書的な存在とも位置付けら れる。分子性物質の電子状態が単純であるのは、いわゆる 強結合近似で電子状態を記述可能であることに由来してい る。孤立分子では、原子軌道を積み上げて記述される分 子軌道のなかで電子が2個存在する最高被占有分子軌道 (Highest Occupied Molecular Orbital; HOMO) と, そのす ぐ上の最低非占有分子軌道(Lowest Unoccupied Molecular Orbital; LUMO) とがある。これらを総称してフロンティ ア軌道と呼ぶが、分子性結晶では分子が集合することに よって分子軌道が重なり合い, 強束縛的なエネルギーバ ンドを形成し、ここに電子が入っている。この HOMO、 LUMO が強固に状態を保持していることで分子の性格を 残したまま電子状態を記述することが可能であること,更 に異方的な分子軌道を格子点におくことによって電子状態 を記述するだけでよい近似になっていることが分子性結晶 の物理をわかりやすくしている。このような観点から分子 軌道にいる電子が秩序化する電子の結晶化について見てい こう。

2. (DI-DCNQI)2Agの構造と物性

ここで取り上げる研究は、1986年の A. Aumüller らの報告から始まった [1]。一連の系は (DCNQI)₂X とあらわされる同形の低次元伝導体である。この系は、Xイオンと平面的なアクセプター DCNQI 分子から構成される。DCNQI分子は一次元的に積層構造(カラム構造)を実現し、分子

平面上に広がる pπ 軌道が隣り合う分子で重なり合うため, 一次元的な π バンドを形成する。Xが一価の陽イオン Ag, Li などの場合は,閉殻であり電荷の自由度は持たない。多 くの同形の物質群に関する報告は文献 [2] を参照されたい。

この物質の結晶構造は、体心正方晶系で空間群は I4, /a, 格子定数は a~21 Å, c~3.9 Å である。Xイオンは DCNQI 末 端のシアノ基の窒素と、正四面体が上下に押しつぶされ た対称構造の点群 D_{2d} の配位をしており、4 回回反の対称 点に位置している。一方、4 本の一次元鎖の置換基で囲ま れた空間の中央には 4 回らせん軸があり、すべての分子は この螺旋対称性でつながれている。z=0, z=1/4 の面にそれ ぞれ映進面が存在している。反転中心はすべての DCNQI 鎖上に存在し、分子の重心位置及び、積層 2 分子の中間 に位置している。DCNQI 分子をXイオン間の結合の配位 子と考えると、c 軸方向への 7 倍周期のユニットセルで、 (DCNQI)₂X の構造は、ダイヤモンド構造となる [3]。この ように、(DCNQI)₂X は有機導体の中でも対称性が高く、 結晶学的に見ても特徴的で興味深い結晶構造を有している (Fig. 1; p25 参照)。

(DI-DCNQI)₂Ag は,開らによって初めて作成され,そ の物性が詳しく調べられた [4]。この系の Ag は閉殻の一 価のイオンとなっており,以下の議論では電子状態の舞台 には現れない。比較的大きなサイズのヨウ素を置換基に持 ってくることにより,次元性の向上とバンド幅を小さくし, より強い電子相関を持つことを狙って作成された 1/4 filled の伝導体である。電気伝導度は,Fig.2のように室温から 半導体的挙動を示し,磁化率は低次元ハイゼンベルグ局在 スピン系の振る舞いを示す。また、5 K 以下の温度で反強 磁性秩序を示すことが NMR[4],ESR[5]の測定から明らか にされている。これは,比較的鋭い金属絶縁体転移ととも に非磁性転移を示す (DMe-DCNQI)₂Ag などと対照的であ る (Fig. 2; p25 参照)。重要なことは,両者は形式価数か ら判断する限り,同じ電子状態であり同じ一次元構造を持 っている。

¹³C-NMR の測定結果では,約200 K 以下の温度領域で明瞭なスペクトルの分離が報告された[6]。これは,DCNQI 分子内の¹³C の環境が,室温ではすべて等価で1種類であったのに対し,低温では2種類に分かれたことを示している。スペクトルシフトの解析から,価数が積層方向に... -0.25, -0.75, -0.75, -0.75 · · · と配列する電荷秩序が, 1 次 元鎖内で起こっていると結論づけた。これを 0101 型の電 荷秩序と呼ぶ。この 1 次元鎖内での電荷秩序は, 疑一次 元系に対する平均場近似を用いた理論でも, *U/t と V/t が* 大きい領域で実現することが予測されており [7], サイト 間のクーロン反発力が本質的な役割を果たす一次元的な Wigner 結晶の電荷秩序であるとして理解されている。ま た, 伊藤らはこの電荷秩序の形成は 2 次転移的であり, 圧 力により顕著に抑制されていくことを報告している [8,9]。

一方で、0101 タイプの電荷秩序配列とは矛盾する実験 結果も報告されている。分子研薬師グループによる IR 吸 収スペクトルの解析からは、4 $k_{\rm F}$ の電荷秩序ではなく、 4 $k_{\rm F}$ の格子変形、すなわち BOW(Bond Ordered Wave)が 形成されていると報告された [10]。その後、山本らによ る IR 及び Raman 散乱実験では、スペクトルの解析から、 4 $k_{\rm F}$ の格子ひずみ(BOW)とともに、2 $k_{\rm F}$ の電荷秩序が 起こっていると報告された [11]。提案された 2 $k_{\rm F}$ の電荷 秩序は、DCNQI 鎖状で電荷が 0110 のように並ぶタイプ で、c軸方向に 4 倍の超周期構造をとる。このような、4 $k_{\rm F}$ -BOW を伴う 2 $k_{\rm F}$ 電荷秩序の安定化は、電子格子相互作 用が取り入れられた疑 1 次元系の理論計算により予測され ている [12]。しかし、この系の放射光X線回折測定では、 4 倍周期の超格子反射は観測されなかった。

以上のように, (DI-DCNQI)₂Ag は電子相関が強く効いた 疑一次元系物質の典型例であるが, その電子状態は議論が 続いている [13,14]。1 次元鎖内で単純な秩序状態を実現し たとしても, 鎖間の関係が複雑である DCNQI 構造の中で どのような3 次元秩序構造を持つのかは, いずれの電荷秩 序パターンでも興味深い。

3. 放射光X線回折実験

高エネルギー加速器研究機構放射光施設内の(旧)BL-1A に設置されているワイセンベルグカメラを用いて, (DI-DCNQI),Ag 単結晶の振動写真法による低温X線回折実験 を行った。温度制御には、He 循環型冷凍機を使用した。 試料は, 大きさ約 0.35 mm × 0.05 mm × 0.05 mm の柱状の 単結晶を使用し、それをサファイア試料棒にアピエゾング リースでマウントした。使用したX線の波長は、0.687 Å である。Fig.3に得られた振動写真を示す。振動角範囲 は、3.5°で、1 枚あたり 10 分間の露光を行った。室温か らc軸が二倍となるような弱い散漫散乱が観測された。そ の散漫散乱は約 200 K 以下の温度領域で、温度低下ととも にスポット状の超格子反射に凝縮していく様子が観測され た。50K付近では、2次元画像データ処理による積分強度 算出に充分な3次元秩序が形成されている。超格子反射の 波数ベクトルは(001/2)で、強度は主反射に対しておよそ 10-3~10-4 程度であった。超格子反射に系統的な消滅則は 観測されず、低温相でのユニットセルは $a_p \times b_p \times 2c_p$ と決 定された。ここで、**a**_p, **b**_p, **c**_p は高温相での格子定数である。 50 K において、構造解析のための測定を行った。

相転移の詳細を議論するために放射光施設 BL-4C に

Figure 3

Oscillation photographs of $(DI-DCNQI)_2Ag$ at room temperature (upper) and 50 K (middle). Lower photographs are temperature dependence of superspot behavior. With decreasing temperature, the diffuse distribution of the scattering intensity gradually condensed into superlattice spots related to the wave vector (0 0 1/2).

Figure 4

Peak profiles (*h*-scan) of 0 0 4 and 0 0 3/2 reflections of (DI-DCNQI)₂Ag at 12 K. Estimated correlation length in ab-plane is about 1300 Å by FWHM (full width of half maximum) of superspot.

おいて Huber 四軸回折計による, ピークプロファイル, (00) 超格子反射の波数依存性の測定を行った。使用した放射光のエネルギーは 18 keV(~0.68 Å) で,温度制御には He 循環型冷凍機を使用した。Fig. 4 に,15 K における, 主反射 (004) と,超格子反射 (003/2) に対する h スキャンのピークプロファイル (ω スキャン) を示す。強度は最大値で規格化し、ピークの中央値を合わせてある。高温相と低温相で (00) 反射には顕著なピークプロファイルの変化は見られない。(004) 反射の半値幅を装置の分解能と仮定して,超格子反射の相関長を見積もると鎖間方向に約1300 Å である。また,(00) に超格子反射が観測されていることから、低温相 $a_p \times b_p \times 2c_p$ の構造では、c軸方向へのらせん対称性と、A及び Bの底心構造の可能性はない。

Tetragonal $a \sim 21$ Å, $c \sim 3.9$ Å

Space Group : $I4_1/a$

Figure 1 Crystal structure of (DCNQI)₂X.

Figure 2

Molecular structure and physical properties of $(DMe-DCNQI)_2Ag$ and $(DI-DCNQI)_2Ag$. a) Temperature dependence of electronic resistivity. b) Temperature dependence of spin susceptibility [4].

従って,以上の条件を満足する空間群を *I*4₁/*a* の正方晶の subgroup から選ぶと *P*4となる。

4. らせんフラストレーション

上記の解析を行おうとすると、極めて困った事態に 陥る。この状況を I4,/a の空間群で4回らせんが位置し ている周りの局所構造を模式的に示した Fig. 5で考えよ う。平均構造から出発してすべてのカラムに電荷密度 の変調構造、すなわち CO(Charge Ordering)を形成し ていくと、電荷の配列は、イジングスピンモデルのよう に、rich もしくは poor の2種類を各サイトに振り分けて いくことになる。相互作用は、最近接サイト間と、第二 近接サイト間のみを考える。第二近接間のクーロン斥力

Schematic view of charge ordering behavior in 4 DCNQI columns in the unit cell. A yellow box in a right figure shows 4 DCNQI columns connected by 4_1 screw symmetry. Red circles and blue ones indicate charge rich site and charge poor site, respectively. B' chain occurs geometrical frustration[15].

は一般的にそれほど弱くないので, 最近接, 第二近接間 のサイトは、電荷が交互配列するものと考える(ちなみ に第二近接が Ferro 的であったとしても以下の議論の結論 は変わらない)。まずカラムAに、{1:rich - 2:poor -1:rich· ··}と電荷を割り振る。カラムBの分子3は、分子1の 第二近接であり 3:poor とする。カラム B の分子 4 は必然 的に rich となり {3:poor-4:rich -3:poor · · · } となる。同じ 関係でカラムCを描くと {5:rich -6:poor -5:rich · · ·}とな る。しかし,次のカラムB'で矛盾に直面する。B'の分 子3',4'は、カラムCの分子5,6の第二近接であるから {4':poor-3':rich-4':poor...} であるが、この第二近接の 関係はぐるりと螺旋を描いて戻ってきたカラムAとは相 容れないためである。つまりカラム B'の電荷の配列には 自由度が残ってしまう。このように、(DI-DCNQI)2Agでは、 イジングモデル型の電荷秩序状態ではフラストレーション を形成してしまい、電荷秩序だけで構造を解くことはでき ない。

このフラストレーションは今まで報告されてきた正三角 形をモチーフとしたカゴメ格子や三次元的なパイロクロア 格子とは発想を異にするものである。単純化して考えれば 三角形が五角形に拡張されただけとも取れるが、実際に結 晶構造内の配置をみると本質的に三次元的なフラストレー ションとなっていることがわかる。我々はこれを「らせん フラストレーション (spiral frustration)」と呼んでいる。

低温構造解析が消滅則と晶系から選択される通常の手続 きで得られる空間群 Pāでは、物性を説明できないことが わかった。詳細は省略するが、低温相の晶系は正方晶で はなく、単斜晶であると群論の議論から結論される。(DI-DCNQI)₂Agの相転移は、ラウエクラス 4/m から 2/m への 対称性の低下であるから、単斜晶の unique-axis は c_p 軸 方向であることが期待される。(00) 上の超格子反射に消 滅則がないことから、空間群は P2/a が唯一の解となる。 P2/a は、反転対称性と a 映進の対称性を保存し、I4₁/a の 4 回回反軸の対称性が低下した 2 回軸を持つ。通常、正方 晶から単斜晶への転移では、双晶が形成され、2 つのドメ インは (a, b, c) と (b, -a, c) の関係にある。以下の結晶構造 解析は、この双晶を仮定して行った。

5. 低温構造の電子状態

P2/a の対称操作の下では, DCNQI 分子の1 次元鎖は, A, B, C の三本が結晶学的に独立である。まず調和近似の 元で, Ag イオンの変位から DCNQI 分子の価数の大小関 係を見積もる。Ag イオンには, 4 つの DCNQI 分子が四面 体配位している。Ag に最も近い DCNQI 分子未端の N の 位置で, LUMO の割合は充分大きい。そのため, Ag イオ ンの変位は,四面体配位している DCNQI 分子の価数不均 衡により生じたものと考えて差し支えない。Ag イオンの 変位の方向から, DCNQI 分子の価数は定性的に求まる。 一次元鎖 C の中の分子は結晶学的に等価であるために価 数が全く同じであることに留意してほしい。

次に、DCNQI 分子の変位に注目する。カラム A は反転 対称性の存在により全く分子変位できない。対して、カラ ム B, C では、分子変位が観測され二量体化が起こってい る。この、二量体は電子に対して周期的な変調ポテンシャ ルとして働くために電子密度は変化する。すなわち、カラ ム C では、二量体の中心に電子密度最大の山がくるよう な電荷密度波が形成されるはずである。カラム A には CO が、カラム C には BOW が、カラム B には、CO と BOW が形成されていることが分かった。これらは、いずれも 4 *k*_F の周期を持った電荷変調を生成するので、一般化した 電荷密度波として取り扱うことが出来る。

構造解析された結果を基にした,電荷秩序の様子の模式 図を Fig. 6 に示す。(a) には,CDW と分子の位相関係を示 した。カラム A とカラム B,カラム B とカラム C は,それ ぞれ最近接の 1 次元鎖である。構造解析により得られた結 果は,最近接カラムで位相がπずれて配列した CDW とし て記述できる。(b) には,ユニットセル中の CDW の配列 を示した。ここでは,DCNQI 分子と CDW の charge-rich な部分のみ示した。青いセルで示したように,電子は局所 的に体心正方格子を作っている。最近接カラム間のクーロ ン斥力が支配的な場合,この電子構造は電子が最も避けあ い安定化しており,まさに電子が結晶化した Wigner 結晶 を実現している [15]。

本来,Wigner 結晶は,電子密度の非常に低い状態でし か実現しないと言われている [16,17]。現実の物質では, そのような低電子密度状態を示す物質は少なく,実験的に 観測されたという報告例は,2次元液体 He 表面上 [18] や GaAs ヘテロ構造中 [19] などごく僅かである。

最近,低次元固体の電荷秩序に対して,ジェリウムモデ ルをベースとした電子ガス模型による理論的アプローチが 報告された [20]。この理論では、1 次元性の固体に関して は広いパラメータ領域で体心正方格子を形成する Wigner 結晶が安定であると述べている。これは、低次元性により 運動エネルギーが著しく抑制されクーロン斥力の効果が際 立つためだと説明されている。このような理論的な考察も 踏まえ,我々はこの実験により得られた位相がπずれた CDW の3 次元構造を Wigner 結晶と考えている。

最後に、なぜ (DI-DCNQI)₂Ag が標準的な bond-CDW で はなく Wigner 結晶化するのかについて考察しよう。拡張 ハバードモデルによる擬一次元の理論計算により得られ た相図を考えると[21], (DI-DCNQI)₂Ag は, BOW と CO の相境界付近に位置していると考えられる。一般に正確 な U, V の値を決定するのは難しいので, 有機導体一般に 対する典型的な値, U = 1.0 eV, V = 0.5 eV を用いよう。二 つの置換基の差で、U, Vの値に大きな差がないとする と、二つの塩の最も大きく異なるパラメータは鎖内の遷 移積分 t の値である。このため U/t-V/t 相図上では, (DI-DCNQI)₂Ag (t = 0.14 eV) は電荷秩序相とモット絶縁体相の 相境界付近に位置する。このことは、標準的な bond-CDW として記述されると考えられている, (DMe-DCNQI)2Ag (t = 0.22 eV) がモット絶縁体相に属することと対照的であ る。このように (DI-DCNIQ)₂Ag は, BOW と CO の状態が 拮抗しているために,結果として鎖間クーロン斥力が顕在 化した Wigner 結晶型の電荷秩序状態が実現しているのだ と考えられる。実際、このような電子状態について最近も 理論的なアプローチがなされている [22,23]。

Figure 6

Schematic view of the molecules and charge density waves. (a) Relationship between molecules and charge density waves on each column. Red areas depict electron-rich areas. The arrows show the directions of molecular displacements. (b) Three-dimensional view of the Wigner crystal-type charge arrangement and the molecules. Charge-rich areas are shown by red ellipses, forming a body-centered tetragonal lattice drawn by the blue lines[15].

6. おわりに

(DI-DCNQI)₂Ag の低温構造解析結果から, CO と BOW が共存した,これまでの疑一次元物質には見られなかった 基底状態の形成を明らかにした。これらを単一の振幅を持 つ電荷密度波として記述することで,非常に単純な体心構 造を持つ電荷秩序構造であることを突き止めた。すなわ ち,鎖間も含めたクーロン相互作用の影響が顕在化した Wigner 結晶であると結論したわけである。このような状 態が実現することの陰には,らせんフラストレーションと 名付けた構造的な縮退の存在がある。拮抗したパラメータ 領域にある場合,各々の秩序変数が協力し合って新しい電 子状態を実現していることが,魅惑的な電子状態の絵から 読み取ることができる。このようなフラストレーションと その解消という機構が興味深い物理を表現しているように 思われる。

しかし,この話題は大団円ではない。注意深い読者なら お気づきのように、2の物性で述べた NMR の解析結果は 最終的に解かれた構造を表現できているわけではない。こ こで引用した論文 [6] の結果は、多結晶試料による測定結 果であり、十分な分解能の測定結果ではない。ここで提案 した電子状態は、今後の様々なアプローチによる精密な測 定、理論的な考察によって初めてその真価を問われるであ ろう。

最後に、この研究は総研大の垣内徹氏の学位論文にまと められた。垣内氏はこの成果を評価され総研大の長倉賞を 受賞したことを付記したい。

謝辞

この研究は、東京大学工学研究科 鹿野田一司教授, KEK 物構研 若林裕助 助教(現大阪大学基礎工 准教授)と の共同研究である。また、本課題は PF の S2 課題として 実施し、文部科学省科学研究費補助金による部分的な援助 を受けた。

引用文献

- A. Aumüller, P. Erk, G. Klebe, S. Hünig, J. U. von Schütz and H. P. Werner, *Angew. Chem. Int. Ed. Engl.* 25, 740 (1986).
- [2] a) R. Kato, H. Kobayashi, A. Kobayashi, T. Mori, H. Inokuchi, *Chem. Lett.* 1579 (1987). b) S. Hünig and P. Erk, Adv. Mater., **3**, 225(1991). c) 詳しくはR. Kato *Bull. Chem. Soc. Jpn.*, **73** 515 (2000) とその references
- [3] S. Hünig, J. Mater. Chem. 5, 1469 (1995). S. Hünig and E. Herberth, *Chem. Rev.* 104, 5535 (2004).
- [4] K. Hiraki and K. Kanoda, *Phys. Rev.* B 54, R17276 (1996).
- [5] T. Sakurai, N. Nakagawa, S. Okubo, H. Ohta, K. Kanoda, and K. Hiraki, *J. Phys. Soc. Jpn.* **70**, 1794 (2001).
- [6] K. Hiraki and K. Kanoda, Phys. Rev. Lett. 80, 4737 (1998).
- [7] H. Seo and H. Fukuyama, J. Phys. Soc. Jpn. 66, 1249 (1997).
- [8] T. Itou, K. Kanoda, K. Murata, T. Matsumoto, K. Hiraki,

and T. Takahashi, Phys. Rev. Lett. 93, 216408 (2004).

- [9] T. Itou, K. Kanoda, K. Hiraki, T. Takahashi, K. Murata, and T. Matsumoto, *Phys. Rev.* B 72, 113109 (2005).
- [10] M. Meneghetti, C. Pecile, K. Yakushi, K. Yamamoto, K. Kanoda, and K Hiraki, J. Solid State Commun. 168, 632 (2002).
- [11] K. Yamamoto, T. Yamamoto, and K. Yakushi, *Phys. Rev. B* 71, 045118 (2005).
- [12] a) K. C. Ung, S. Mazumdar, and D. Toussaint, *Phys. Rev. Lett.* **73**, 2603 (1994), b) S. Mazumdar and S. Rmasesha, *Phys. Rev. Lett.* **82**, 1522 (1999).
- [13] S. Mazumdar, D. Campbell, R. T. Clay, and S. Ramasesha, *Phys. Rev. Lett.* 82, 2411 (1999).
- [14] K. Hiraki and K. Kanoda, Phys. Rev. Lett. 82, 2412 (1999).
- [15] T. Kakiuchi, Y. Wakabayashi, H. Sawa, T. Itou, K. Kanoda, *Phys Rev. Lett.* **98**, 066402 (2007)
- [16] E. Wigner, *Phys. Rev.* 46, 1002 (1934).
- [17] D. M. Ceperley and B. J. Alder, *Phys. Rev. Lett.* 45, 566 (1980).
- [18] C.C. Grimes and G. Adams, *Phys. Rev. Lett.* 42, 795 (1979).
- [19] J. Yoon, C. C. Li, D. Shahar, D. C. Tsui, and M. Shayegan, *Phys. Rev. Lett.* 82, 1744 (1999).
- [20] G. Rastelli, P. Qu'emerais, and S. Fratini, *Phys. Rev. B* 73 155103 (2006).
- [21] M. Tsuchiizu, H. Yoshioka, and Y. Suzumura, J. Phys. Soc. Jpn. 70, 1460 (2001).
- [22] H.Yoshioka, M. Tsuchiizu, and H. Seo, J. Phys. Soc. Jpn. 76(2007) 103701.

(原稿受付:2009年12月19日)

著者紹介

- 澤 博 Hiroshi SAWA
- 名古屋大学工学研究科 応用物理
- 〒464-8603 名古屋市千種区不老町

Tel: 052-789-4453

E-mail: hiroshi.sawa@cc.nagoya-u.ac.jp

略歴:2008 年 4 月より物構研から現職に異動。理学博士。 最近の研究:放射光X線回折による超精密構造解析がどこ まで可能か?